|} PRECISE
AUTOMATION

Guidance Programming Language

GPL Dictionary Pages

Version 4.2.0, January 1, 2019
PRELIMINARY RELEASE
P/N: G1X0-DI-A0010

Precise Automation Inc., 727 Filip Road, Los Altos, California 94024
www.preciseautomation.com

Document Content

The information contained herein is the property of Precise Automation Inc., and may not be copied,
photocopied, reproduced, translated, or converted to any electronic or machine-readable form in whole or
in part without the prior written approval of Precise Automation Inc. The information herein is subject to
change without notice and should not be construed as a commitment by Precise Automation Inc. This
information is periodically reviewed and revised. Precise Automation Inc. assumes no responsibility for
any errors or omissions in this document.

Copyright © 2004-2019 by Precise Automation Inc. All rights reserved.
The Precise Logo is a registered trademark of Precise Automation Inc.
Trademarks

GIlO, GSB, Guidance 3400, Guidance 3300, Guidance 3200, Guidance 2600, Guidance 2400, Guidance
2300, Guidance 2200, Guidance 1400, Guidance 1300, Guidance 1200, Guidance 0200 Slave Amplifier,
Guidance 0006, Guidance 0004, Guidance Controller, Guidance Development Environment, GDE,
Guidance Development Suite, GDS, Guidance Dispense, Guidance Input and Output Module, GIO,
Guidance Programming Language, GPL, Guidance Slave Board, Guidance System, Guidance System
D4/D6, PrecisePlace 1300, PrecisePlace 1400, PrecisePlace 2300, PrecisePlace 2400, PrecisePlace
0120, PrecisePlace 0130, PrecisePlace 0140, PreciseFlex 300, PreciseFlex 400, PreciseFlex 3400,
PreciseFlex 1300, PreciseFlex 1400, PrecisePower 300, PrecisePower 500, PrecisePower 2000,
PreciseVision, RIO are either registered or trademarks of Precise Automation Inc., and may be registered
in the United States or in other jurisdictions including internationally. Other product names, logos,
designs, titles, words or phrases mentioned within this publication may be trademarks, service marks, or
trade names of Precise Automation Inc. or other entities and may be registered in certain jurisdictions
including internationally.

Any trademarks from other companies used in this publication are the property of those respective
companies. In particular, Visual Basic, Visual Basic 6 and Visual Basic.NET are trademarks of Microsoft
Inc.

Disclaimer

PRECISE AUTOMATION INC., MAKES NO WARRANTIES, EITHER EXPRESSLY OR IMPLIED,
REGARDING THE DESCRIBED PRODUCTS, THEIR MERCHANTABILITY OR FITNESS FOR ANY
PARTICULAR PURPOSE. THIS EXCLUSION OF IMPLIED WARRANTIES MAY NOT APPLY TO
YOU. PLEASE SEE YOUR SALES AGREEMENT FOR YOUR SPECIFIC WARRANTY TERMS.

Precise Automation Inc.

727 Filip Road

Los Altos, California 94024
U.S.A.
www.preciseautomation.com

Warning Labels

The following warning and caution labels are utilized throughout this manual to convey critical information
required for the safe and proper operation of the hardware and software. It is extremely important that all
such labels are carefully read and complied with in full to prevent personal injury and damage to the
equipment.

There are four levels of special alert notation used in this manual. In descending order of importance,
they are:

DANGER: This indicates an imminently hazardous situation, which, if not
avoided, will result in death or serious injury.

WARNING: This indicates a potentially hazardous situation, which, if not
avoided, could result in serious injury or major damage to the equipment.

CAUTION: This indicates a situation, which, if not avoided, could result in minor
injury or damage to the equipment.

NOTE: This provides supplementary information, emphasizes a point or
procedure, or gives a tip for easier operation

GPL Dictionary Pages Summary

Array Class

Table Of Contents

Array Class Summary

array.GetUpperBound Property
array.Length Property
array.Rank Property

Console Class

Console Class Summary
Console.Write Method
Console.WriteLine Method

Controller Class

Exception Handling

Controller Class Summary
Controller.Command Method
Controller.ErrorLog Property

Controller.Load Method

Controller.PDb Property

Controller.PDbNum Property
Controller.PowerEnabled Property
Controller.PowerState Property
Controller.RecordButton Property
Controller.ShowDialog Method - Basic Modes
Controller.ShowDialog Method - Advanced Mode
Controller.ShowDialogMCP Method
Controller.SleepTick Method
Controller.SoftEStop Property
Controller.SystemMessage Method
Controller.SystemSpeed Property
Controller.Tick Property

Controller.Timer Property

Controller.Unload Method

10

12

12
14
16
18
19
21
23
25
27
28
32
36
39
40
41
42
43
44
46

47

Exception Handling Summary

Catch Statement

End Try Statement

Exit Try Statement

Finally Statement

Throw Statement
Try..Catch..Finally..End Try Statements
exception_object.Axis Property
exception_object.Clone Method
exception_object.ErrorCode Property
exception_object.Message Method
exception_object.Qualifier Property
exception_object.RobotError Property
exception_object.RobotNum Property

exception_object.UpdateErrorCode Method

File and Serial 1/0 Classes

File and Serial I/0O Classes Summary
File.Copy Method

File.CreateDirectory Method
File.DeleteDirectory Method
File.DeleteFile Method
File.GetDirectories Method
File.GetFiles Method

New StreamReader Constructor
streamreader_object.Close Method
streamreader_object.Peek Method
streamreader_object.Read Method
streamreader_object.ReadLine Method
New StreamWriter Constructor
streamwriter_object.AutoFlush Property
streamwriter_object.Close Method
streamwriter_object.Flush Method
streamwriter_object.NewLine Property
streamwriter_object.Write Method

streamwriter_object.WriteLine Method

Functions

47
49
50
51
52
53
55
58
59
60
61
62
63
64
65

67

67
69
71
72
73
74
75
76
77
78
79
80
81
83
84
85
86
87
88

90

Function Summary
CBool Function
CByte Function
CDbl Function
Cint Function
CShort Function
CSng Function
CStr Function
Fix Function
Hex Function
Int Function

Rnd Function

Latch Class

Latch Class Summary
latch_object.Angle Property
Latch.Count Shared Property
latch_object.ErrorCode Property
Latch.Flush Shared Method
latch_object.Location Method
Latch.Result Shared Method
latch_object.Signal Property
Latch.ThreadEvent Shared Property

latch_object. Timestamp Property

Location Class

Location Class Summary
location_object.Angle Property
location_object.Angles Method
location_object.Clone Method
location_object.Config Property
location_object.ConveyorLimit Method
Location.Distance Method
location_object.Here Method
location_object.Here3 Method
location_object.Inverse Method

location_object.KineSol Method

Vi

90
91
93
95
97
99
101
103
105
107
109
111

113

113
115
116
117
118
119
120
122
124
126

128

128
131
132
133
134
136
138
139
141
143
145

location_object.Mul Method 147

location_object.Normalize Method 149
location_object.Pitch Property 150
location_object.Pos Property 152
location_object.PosWrtRef Property 154
location_object.RefFrame Property 156
location_object.Roll Property 157
location_object. Text Property 159
location_object. Type Property 160
location_object.X Property 161
location_object.XYZ Method 163
location_object.XYZInc Method 165
Location.XYZValue Method 167
location_object.Y Property 169
location_object.Yaw Property 171
location_object.Z Property 173
location_object.ZClearance Property 175
location_object.ZWorld Property 177
Math Class 179
Math Class Summary 179
Math.Abs Method 181
Math.Acos Method 182
Math.Asin Method 183
Math.Atan Method 184
Math.Atan2 Method 185
Math.Ceiling Method 187
Math.Cos Method 188
Math.Cosh Method 189
Math.E Method 190
Math.Exp Method 191
Math.Floor Method 192
Math.Log Method 193
Math.Log10 Method 194
Math.Max Method 195
Math.Min Method 196
Math.PIl Method 197

Vii

Math.Pow Method 198

Math.Sign Method 199
Math.Sin Method 200
Math.Sinh Method 201
Math.Sqrt Method 202
Math.Tan Method 203
Math.Tanh Method 204
Modbus Class 205
Modbus Class Summary 205
modbus_object.Close Method 206
modbus_object.ReadCoils Method 207
modbus_object.ReadDevicelD Method 208
modbus_object.ReadDiscretelnputs Method 210
modbus_object.ReadHoldingRegisters Method 211
modbus_object.ReadInputRegisters Method 213
modbus_object. Timeout Property 215
modbus_object.WriteMultipleCoils Method 216
modbus_object.WriteMultipleRegisters Method 217
modbus_object.WriteSingleCoil Method 218
modbus_object.WriteSingleRegister Method 219
Move Class 220
Move Class Summary 220
Move.Approach Method 222
Move.Arc Method 224
Move.Circle Method 227
Move.Delay Method 230
Move.Extra Method 231
Move.ForceOverlap Method 233
Move.Loc Method 237
Move.OneAxis Method 239
Move.Rel Method 241
Move.SetJogCommand Method 243
Move.SetRealTimeMod Method 246
Move.SetSpeeds Method 248
Move.SetTorques Method 250

viii

Move.StartJogMode Method
Move.StartRealTimeMod Method
Move.StartSpeedDAC Method
Move.StartTorqueCntrl Method
Move.StartVelocityCntrl Method
Move.StopSpecialModes Method
Move.Trigger Method
Move.WaitForEOM Method

Networking Classes

Networking Classes Summary

New IPEndPoint Constructor
ipendpoint_object.IPAddress Property
ipendpoint_object.Port Property
socket_object.Available Property
socket_object.Blocking Property
socket_object.Close Method
socket_object.Connect Method
socket_object.KeepAlive Property
socket_object.Receive Method
socket_object.ReceiveFrom Method
socket_object.ReceiveTimeout Property
socket_object.RemoteEndPoint Property
socket_object.Send Method
socket_object.SendTimeout Property
socket_object.SendTo Method

New TcpClient Constructor
tcpclient_object.Client Method
tcpclient_object.Close Method

New TcpListener Constructor
tcplistener_object.AcceptSocket Method
tcplistener_object.Close Method
tcplistener_object.Pending Property
tcplistener_object.Start Method
tcplistener_object.Stop Method

New UdpClient Constructor

udpclient_object.Client Method

252
254
260
264
266
269
270
273

274

274
276
277
278
279
280
281
282
283
285
287
289
290
291
293
294
296
297
298
299
300
301
302
303
304
305
306

udpclient_object.Close Method 307

Profile Class 308
Profile Class Summary 308
profile_object.Accel Property 310
profile_object.AccelRamp Property 312
profile_object.Clone Method 314
profile_object.Decel Property 315
profile_object.DecelRamp Property 317
profile_object.InRange Property 319
profile_object.Speed Property 321
profile_object.Speed2 Property 323
profile_object.Straight Property 325
profile_object. Text Property 327

Reference Frame Class 328
RefFrame Class Summary 328
refframe_object.ConveyorOffset Property 331
refframe_object.ConveyorRobot Property 333
refframe_object.Loc Property 335
refframe_object.Palletindex Property 337
refframe_object.PalletMaxIindex Property 339
refframe_object.PalletNextPos Method 341
refframe_object.PalletOrder Property 343
refframe_object.PalletPitch Property 345
refframe_object.PalletRowColLay Method 346
refframe_object.Pos Method 348
refframe_object.PosWrtRef Method 350
refframe_object. Text Property 352
refframe_object. Type Property 353

Robot Class 355
Robot Class Summary 355
Robot.Attached Property 358
Robot.Base Property 360
Robot.CartMode Property 362
Robot.Custom Property 364

Robot.DefLinComp Method 366

Robot.Dest Property 368
Robot.DestAngles Property 370
Robot.Home Method 372
Robot.HomeAll Method 373
Robot.JointToMotor Method 374
Robot.LastProfile Property 376
Robot.MotorTempStatus Property 377
Robot.MotorToJoint Method 379
Robot.Payload Property 381
Robot.RapidDecel Property 383
Robot.RealTimeModAcm Property 384
Robot.RestartBase Property 386
Robot.RestartTool Property 387
Robot.Selected Property 388
Robot.Source Property 389
Robot.SourceAngles Property 391
Robot.SpeedAngles Property 393
Robot. Tool Property 395
Robot. TrajState Property 397
Robot.Where Property 400
Robot.WhereAngles Property 402
Signal Class 404
Signal Class Summary 404
Signal.AlO Property 405
Signal.DIO Property 407
Statements 410
Statements Summary 410
Call Statement 412
Case, Case Else Statements 414
Class Statement 415
Const Statement 416
Delegate Statement 418
Dim Statement 420

Do...Loop Statements 422

Else, ElselF Statements 425

End Statements 426
Exit Statements 427
For...Next Statements 428
Function Statement 431
Get Statement 434
GoTo Statement 435
If.. Then...Else...End If Statements 437
Loop Statements 439
Module Statement 440
Next Statements 441
Property Statement 442
ReDim Statement 445
Return Statement 446
Select...Case...End Select Statements 447
Set Statement 449
Sub Statement 451
While...End While Statements 453
Strings 455
String Summary 455
String.Compare Method 457
string.IndexOf Method 459
string.Length Property 461
string.Split Method 462
string.Substring Method 463
string. ToLower Method 464
string. ToUpper Method 465
string. Trim Method 466
string. TrimEnd Method 467
string. TrimStart Method 468
Asc Function 469
Chr Function 470
Format Function 471
FromBitString Function 474
Instr Function 476
LCase Function 478

Xii

Len Function
Mid Function
ToBitString Function

UCase Function

Thread Class

Thread Class Summary

New Thread Constructor
thread_object.Abort Method
thread_object.Argument Property
Thread.CurrentThread Shared Method
thread_object.Join Method
thread_object.Name Property
thread_object.Project Property
thread_object.Resume Method
Thread.Schedule Shared Method
thread_object.SendEvent Method
Thread.Sleep Shared Method
thread_object.Start Method
thread_object.StartProcedure Property
thread_object.Suspend Method
Thread.TestAndSet Shared Method
thread_object.ThreadState Property
Thread.WaitEvent Shared Method

Vision Classes

Vision Classes Summary
vision_object.Disconnect Method
vision_object.ErrorCode Property
vision_object.Instance Property
vision_object.IPAddress Property
vision_object.Process Method
vision_object.Result Method
vision_object.ResultCount Method
vision_object.Status Property
vision_object.ToolProperty Property

visresult_object.ErrorCode Property

479
480
481
483

484

484
486
488
489
491
492
493
494
495
496
500
501
503
504
505
506
508
509

512

512
514
515
516
517
518
520
522
524
525
531

Xiii

visresult_object.Info Property 532

visresult_object.InfoCount Property 533
visresult_object.InfoString Property 534
visresult_object.InspectActual Property 535
visresult_object.InspectPassed Property 536
visresult_object.Loc Property 537
visresult_object.ProcessID Property 539
visresult_object. Type Property 540
XML Classes 541
XML Classes Summary 541
New XmIDoc Constructor 544
xmldoc_object.CreateNode Method 545
XmlDoc.DecodeEntities Shared Method 547
xmldoc_object.DocumentElement Method 549
XmlDoc.EncodeEntities Shared Method 550
xmldoc_object.ErrorCode Property 552
XmIDoc.LoadFile Shared Method 553
XmlDoc.LoadString Shared Method 555
xmldoc_object.Message Property 557
xmldoc_object.SaveFile Method 558
xmldoc_object.SaveString Method 560
xmlnode_object.AddAttribute Method 562
xmlnode_object. AddElement Method 563
xmlnode_object.AddElementNode Method 564
xmlnode_object.AppendChild Method 565
xmlnode_object.ChildNodeCount Property 567
xmlnode_object.Clone Method 568
xmlnode_object.FirstChild Method 570
xmlnode_object.GetAttribute Method 571
xmlnode_object.GetAttributeNode Method 572
xmlnode_object.GetElement Method 573
xmlnode_object.GetElementNode Method 574
xmlnode_object.HasAttribute Method 575
xmlnode_object.HasChildNodes Property 576
xmlnode_object.HasElement Method 577
xmlnode_object.InsertAfter Method 578

Xiv

xmlnode_object.InsertBefore Method
xmlnode_object.LastChild Method
xmlnode_object.Name Property
xmlnode_object.NextSibling Method
xmlnode_object.OwnerDocument Method
xmlnode_object.ParentNode Method
xmlnode_object.PreviousSibling Method
xmlnode_object.RemoveAttribute Method
xmlnode_object.RemoveChild Method
xmlnode_object.RemoveElement Method
xmlnode_object.ReplaceChild Method
xmlnode_object.SetAttribute Method
xmlnode_object.SetElement Method
xmlnode_object.Type Property

xmlnode_object.Value Property

580
582
583
584
585
586
587
588
589
590
591
593
594
595
597

XV

GPL Dictionary Pages Summary

The Guidance Programming Language Dictionary Pages provide detailed information on each instruction,

keyword, function, and class property and method that is available in GPL. For convenience, these

descriptions are group either by their class or by their major function. Within each group they are sorted

alphabetically.

In general, instruction names, keywords, function names, group names, and property and method names

are indicated in bold. User specified variable names are indicated in italics. Sample GPL program
snippets are presented in the Courier font.

The following table summarizes each of the major groups of descriptions.

Group

Description

Array Class

Provides the properties of any type of variable array.

Console Class

Provides methods for performing output to the serial
console or to the GDE console window.

Controller Cl

ass

Provides access to general facilities provided by the
motion control hardware such as power control, timers,
etc.

Exception Handling

Includes statements for fielding execution exceptions and
the Exception Class for storing exception information.

File and Serial 1/0 Classes

Provides File, StreamReader and StreamWriter classes
that implement file and serial line input and output
communications.

Includes standard functions, such as conversion routines,

Functions that do not fall into a specific class.
Provides access to the results of latch input events,
Latch Class including the time and robot position when the latch

occurred.

Location Class

Defines positions and orientations of the robot and
objects.

Math Class

Provides the standard arithmetic and trigonometric
functions.

Modbus Class

Permits programs to communicate with other intelligent
devices using the MODBUS/TCP Ethernet
communication protocol.

Move Class

Provides the basic methods for executing a motion
between Locations using Profiles.

Networking Classes

Classes for Ethernet network communications. Includes
IPEndPoint Class for specifying IP and port addresses;
Socket Class that provides basis for networking I/O
operations; TcpListener Class for TCP server
applications; TcpClient Class for TCP client applications;
and UdpClient Class for UDP server and client
applications.

Profile Class

Defines sets of parameters that specify the trajectory to

be followed when moving between Locations.

GPL Dictionary Pages Summary

RefFrame Class

Defines robot and part reference frames. Cartesian
Locations and RefFrames can be defined with respect
to a RefFrame.

Provides access to the attributes and properties of each

Robot Class robot such as their current position and homing methods.
. Reads and writes digital, analog and other simple means

Signal Class .

of input and output.

Includes control structures, user procedures and
Statements)
E— functions, and other common language elements.

. Provides String manipulation methods in an Object

Strings

oriented fashion.

Thread Class

Provides the means for starting, stopping, and monitoring
the execution of independent threads.

\Vision Classes

Provides the means for interfacing to PreciseVision and
easily generating vision-guided motion applications.

XML Classes

Provides the ability to create, parse, and modify XML
(eXtensible Markup Language) documents. This facility
enables structured data to be bi-directionally exchanged

with a host computer using a standard data format.

Array Class

Array Class Summary

The following pages provide detailed information on the properties and methods of the
Array Class.

Array variables of all types (e.g. Strings, Locations, Integers) are members of the built-
in Array Class. You can use the properties of this class to determine the properties of an
array.

The table below briefly summaries the properties and methods for this class, which are
described in greater detail in the sections that follow.

Member Type Description

Returns the upper bound for a particular
dimension of an array. The lower bound is
array.GetUpperBound [Get Property jalways 0, so the total number of elements
in this dimension is one greater than the
upper bound.

Returns the total number of elements in the

y.Leng) : . .
array.Length Get Property entire array, in all dimensions.
arrayv Rank Get Property Returns the array rank, which is the

number of dimensions in an array.

Array Class

array.GetUpperBound Property

Returns the maximum allowed array index for a particular dimension of an array.
...array.GetUpperBound(dimension)

Prerequisites

None
Parameters
dimension
A required numeric expression that specifies the index, from 0 to rank-1,
of the dimension whose upper bound should be returned.
Remarks

In GPL, all array dimension indices start at 0 and end at the upper bound. This upper
bound is the same value specified in a Dim or ReDim statement. The number of
elements in an array dimension is 1 plus the upper bound value.

Examples

Dim array(3,4) As Integer
Dim d1, d2 As Integer

dl = array.GetUpperBound(0) " Returns the value 3
d2 = array.GetUpperBound(1) " Returns the value 4
See Also

Array Class | array.Length | Dim Statement | ReDim Statement

Array Class

array.Length Property

Returns the total number of elements in an entire array.
...array.Length

Prerequisites
None

Parameters
None

Remarks

In GPL, all array dimension indices start at 0 and end at the upper bound. The Length
may be computed by multiplying (1+upper bound) of all array dimensions.

Do not be confused when using the Length property with String arrays. For example, if
you declare: Dim sarray(3) As String.

sarray.Length is the number of elements in the array, in this case 4

(from O to 3).
sarray(0).Length is the length of the string contained in sarray(0), initially
0.

Examples

Dim array(3,4) As Integer
Dim length As Integer
length = array.Length " Returns the value 20 = (1+3)*(1+4)

See Also

Array Class | array.GetUpperBound| Dim Statement | ReDim Statement

Array Class

array.Rank Property

Returns the total number of dimensions (the rank) in the array.
...array.Rank

Prerequisites
None
Parameters
None
Remarks
The Rank of an array is the number of dimensions in that array.

Examples

Dim array(3,4) As Integer
Dim array2(5) As Integer
Dim r1, r2 As Integer

rl = array.Rank " Returns 2
r2 = array2.Rank " Returns 1
See Also

Array Class | Dim Statement | ReDim Statement

Console Class

Console Class Summary

The following pages provide detailed information on the methods of the global Console
Class. These methods support simple output to the GPL console.

The actual destination of console output depends on the presence of the -event switch on
the Start console command.
serial port named "/dev/icom1". If -event is present, console output is sent to GDE where
it is displayed in the GPL Output window.

If -event is not present, console output is sent to the first

The table below briefly summaries the properties and methods for this class, which are
described in greater detail in the sections that follow.

Member Type Description
. Shared Diagnostic method that writes a number or
Console.Write .
e Method a string to the console.
Diagnostic method that writes a number or
I Shared :)
Console.WriteLine a string to the console, followed by a line
Method
feed (LF) character.

Console Class

Console.Write Method

Diagnostic method that writes a numeric or string value to the GPL console with no line
terminator.

Console.Write (number)
Or
Console.Write (string)

Prerequisites

None
Parameters
number
A required numeric expression whose value is displayed.
string
A required string expression whose value is displayed.
Remarks

This method writes a single numeric or string value to the GPL console with no line
terminator. Subsequent output continues on the same line. For output that combines
both string and numeric values, use the CStr function.

The actual destination for console output depends on how the currently executing thread
was started and whether or not the -event switch is present in the Start console
command. If a thread is started by another thread, the destination depends on how the
original thread was started.

Thread Start Source -event Specified | Console Output Destination

Serial console on /dev/icom1 No dev/com1 serial port

Serial console on /dev/icom1 Yes GDE GPL Output window

GDE N/A GDE GPL Output window
Operator Control Panel N/A dev/coml serial port

TELNET Yes GDE GPL Output window
TELNET (DatalD 411=1) No dev/coml serial port

TELNET (DatalD 411=2) No TELNET connection

Console Class

Because the console output destination may vary, it is best to only use this method for
debugging. To always do output to the /dev/com1l serial port, use the StreamWriter
Class methods specifying device /dev/icoml. To send messages to the system operator,
use the Controller.SystemMessage method.

Examples

Console._Write("Test ") " Produces the output: "Test 1"
Console.Write(l)

See Also

Console Class | Console.WriteLine | Controller.SystemMessage | CStr Function
StreamWriter Class

Console Class

Console.WriteLine Method

Diagnostic method that writes a numeric or string value to the GPL console followed by a
line terminator.

Console.WriteLine (number)
Or
Console.WriteLine (string)

Prerequisites

None
Parameters
number
A required numeric expression whose value is displayed.
string
A required string expression whose value is displayed.
Remarks

This method writes a single numeric or string value to the GPL console followed by a line
terminator. Subsequent output appears on the next line. For output that combines both
string and numeric values, use the CStr function.

The actual destination for console output depends on how the currently executing thread
was started and whether or not the -event switch is present in the Start console
command. If a thread is started by another thread, the destination depends on how the
original thread was started.

Thread Start Source -event Specified | Console Output Destination

Serial console on /dev/icom1 No dev/com1 serial port

Serial console on /dev/icom1 Yes GDE GPL Output window

GDE N/A GDE GPL Output window
Operator Control Panel N/A dev/coml serial port

TELNET Yes GDE GPL Output window
TELNET (DatalD 411=1) No dev/coml serial port

TELNET (DatalD 411=2) No TELNET connection

10

Console Class

Because the console output destination may vary, it is best to only use this method for
debugging. To always do output to the /dev/com1l serial port, use the StreamWriter
Class methods specifying device /dev/icoml. To send messages to the system operator,
use the Controller.SystemMessage method.

Examples

Console._WriteLine("Test ") " Produces the output: Test
Console.WriteLine(1) - 1

Dim ii As Integer
For 1i = 1 To 10
Console.WriteLine(""The square of " & CStr(ii) _
& " Is " & CStr(ii*ii))
Next ii

See Also

Console Class | Console.Write | Controller.SystemMessage| CStr Function | StreamWriter Class

11

Controller Class

Controller Class Summary

The following pages provide detailed information on the properties and methods of the
global Controller Class. This class provides access to the general facilities provided by
the Guidance Controller, e.g. high power control, E-Stop logic, configuration database
values, etc. As such, this class and all of its members are uniquely defined for Precise
controller products and do not conform to any other standards. In the case of certain
methods, such as the SleepTick, very similar functionality is provided by other means
within the Basic language. However, the members of this class were selected based
upon ease-of-use considerations or because they provide some slightly different, but
important, functionality.

As is standard in GPL, conversions between different arithmetic types, e.g. Integer,
Single, Double, are automatically performed as required. So, for numeric properties and
methods of the Controller Class, it is not necessary to have different variations of these
members to deal with the different possible mixes of input parameter data types. Also, as
appropriate, the properties and methods generally produce results that are formatted as
Double’s. These results will automatically be converted to smaller data types as
necessary, e.g. Double -> Integer, and will not generate an error so long as numeric
overflow does not occur.

The table below briefly summarizes the properties and methods that are described in
greater detail in the following sections.

Member Type Description

Executes a console command and

Controller.Command Method .
returns any output as a String value.
Returns an entry from the system Error
Controller.ErrorLog Property Log as a String value or clears the Error
Log.
Controller.Load Method Loadg a GPL project into memory a_nd
compiles it in preparation for execution.
Controller.PDb Property Sets and gets any accessible value in the

configuration parameter database.
Optimized means to set and get a
Controller.PDbNum Property numeric value in the configuration
parameter database.

Sends a request to either turn on or off
Controller.PowerEnabled [Property high (motor) power to the amplifier.
Returns whether high power is on or off.
Gets the current state of the high power
sequence.

Controller.PowerState Property

Controller Class

Sets and gets the latched Boolean value

Controller.RecordButton [Property that indicates if the hardware MCP
RECORD button has been pressed.
Controller.ShowDialog - Displays a pop-up dialog box on the web
. Method
Basic Operator Control Panel.
Controller.ShowDialog - Method Displays a pop-up dialog box on the web
Advanced Operator Control Panel.
Displays a pop-up dialog box on the LCD
Controller.ShowDialogMCPMethod display of the Precise Hardware Manual
Control Pendant.
Delays further execution of a thread for a
Controller.SleepTick Method specified number of Trajectory Generator
periods.
Sets and gets the Boolean flag that
Controller.SoftEStop Property riggers a Soft E-Stop.
Enters a message into the GPL system
Controller.SystemMessage [Method message log that is displayed on the web
Operator Control Panel.
Sets and gets the property that can
Controller.SystemSpeed Property reduce the speed of all robot motions.
, Gets the execution repetition period for
Controller.Tick Property the Trajectory Generator.
. Gets the value of the controller’'s usec
Controller.Timer Property : i
clock in units of seconds.
Controller Unload Method Unloads an idle GPL project from

memory.

13

Controller Class

Controller.Command Method

Executes a console command and returns the command output as a string.

... Controller.Command(command_string)

Prerequisites

None

Parameters

command_string

A required String expression. The String expression can be a String
variable, constant, function or method, or a concatenation of these String
elements. The value of the string is interpreted as a standard Console
Command.

Remarks

This method executes the Console Command defined by the command_string
parameter. For a list of valid commands, please see the Console Command section of
the Documentation Library.

If the command requires additional data, the command_string must contain the command
definition followed by an ASCII line-feed character (GPL constant GPL_LF, numeric
value 10), followed by the additional data. Multiple lines of data may be supplied in the
same manner.

This method returns a string value that contains any output generated by the command,
followed by the command status. Each line of output is terminated by an ASCII line-feed
character. The final line of output is always a status string, followed by a line-feed. If the
command generated no output, the string value contains only the status followed by a
line-feed.

The status string is an ASCII value that contains:

e A numeric status code. 0 means success, < 0 indicates a standard error code.
e Atext string enclosed in quotes corresponding to the numeric status code.

Be careful about issuing a command that could generate a large amount of output such
as a DataLog or Type command. Such a command could consume all available free
storage and cause your system to stop with "No memory available" errors.

Examples

14

Controller Class

Dim ss As String
ss = Controller.Command(**directory')
Console.WriteLine(ss)
Displays the output:

dev

ROMDISK

flash

GPL

0,"Success"

ss = Controller._Command(*‘directory xyz')
Console.WriteLine(ss)

Displays the output:

-508,"*File not found*"

See Also

Controller Class

15

Controller Class

Controller.ErrorLog Property

Returns an entry from the system Error Log as a String value or clears the Error Log.

Controller.ErrorLog = <value>
Or
... Controller.ErrorLog(entry)

Prerequisites

None
Parameters
entry
A required numeric expression that specifies the Integer number of the
Error Log entry to be returned. This value can range from 1 to n, where
1 indicates that the most recent entry should be returned.
Remarks

Whenever a runtime error occurs in the system, the error is time stamped and entered
into the system Error Log. These errors can be generated by an executing thread or from
the motion control system. In addition, GPL applications can enter items into the log
using the Controller.SystemMessage method.

The entries in the Error Log are displayed on the web based Operator Control Panel and
can be retrieved from the console interface.

This method permits GPL programs to retrieve entries from the Error Log one at a

time. Each returned value contains the time stamp, marker indicating the thread that
generated the error, the numeric error code and the text error message. A example of a
typical returned value is as follows:

04-09-2007 12:27:14.223, Trj, -1611, "*Auto/Manual switch set to Manual*"

If you request an entry that does not exist, an empty string value is returned. Also, if a
new entry is added to the log or the log is cleared as you are scanning through the log,
you may get an inconsistent set of error entries.

If this property is assigned a non-zero value as indicated above, rather than retrieving an
entry, all entries are deleted from the Error Log.

Examples

16

Dim err As String

Dim ii As Integer

For ii = 1 To 100
err = Controller_ErrorLog(ii)
If (err <> ") Then

Console.WriteLine(err)
Else
Exit For
End If
Next
Controller.ErrorLog = 1

See Also

Retrieve all entries from log
Display all errors

No more entries in the log

Clear all entries in the log

Controller Class | Controller.SystemMessage

Controller Class

17

Controller Class

Controller.Load Method

Loads the files associated with a GPL project into memory and compiles them so that the
project procedures are ready to be executed.

Controller.Load(project_folder_path)

Prerequisites

The project folder must contain a valid project file named Project.gpr. This project file
describes all the remaining files within the project. The project must not be currently
loaded.

Parameters
project_folder_path

A required string expression that specifies the name of the folder that
contains the project to be loaded. Normally the folder is located on the
"/flash" device.

Remarks

This method loads a project by first creating a folder in the controller's memory section
that is allocated for GPL projects. Then, all of the files associated with the project are
copied into the memory folder. Finally, the project is compiled so that the loaded
procedures are ready to be executed.

No compilation errors are displayed on the console. Examine the file
/GPL/project_name/Compile.log for a listing of compiler messages.

This method will throw an exception if the project cannot be loaded, if it is already loaded,
or if compilation errors occur.

Examples

Dim th As Thread
Controller._Load(""/flash/projects/Test')

th = New Thread(*'Main", "Test', "Thread2™)
th.Start(Q)

See Also

Controller Class | Controller.Unload | Thread.Start

18

Controller.PDb Property

Sets and gets any accessible value in the configuration parameter database.

Controller.PDb(dataid, unit, unit2, array_index, key) = <new_string_value>

Or

... Controller.PDb(dataid, unit, unit2, array_index)

Prerequisites

None

Parameters

dataid

unit

unit2

A required numeric expression that specifies an Integer identification
code for the parameter to be accessed. For example, the parameter for
setting the system “test speed” is 601.

An optional numeric expression that specifies an Integer unit number for
the parameter to be accessed. For many parameters, e.g. the Controller,
only a single unit exists. For parameters that refer to devices with
multiple possible units, e.g. multiple robots driven by a single controller,
this parameter ranges from 1 to n. If not specified, this value defaults to
1.

An optional numeric expression that specifies an Integer sub unit
number for the parameter to be accessed. The use of the sub unit
number is not very common and this parameter is normally just defaulted
to 1.

array_index

key

An optional numeric expression that specifies an Integer array index for
parameters that have multiple values. For example, for a robot with
multiple axes, the “joint maximum soft stop limits” (dataid 16077) is an
array with one value for each joint. If not specified, this value defaults to
0, which reads all possible array values.

Controller Class

19

Controller Class

An optional numeric expression that specifies an Integer key code to
override robot configuration protection and set a protected DatalD value.

Remarks

As described in the Controller Software Introduction, all of the key variables for
configuring and monitoring the operation of the system are stored in a unified parameter
database. Controller.PDb can be used to read or write all accessible values in the
parameter database.

Controller.PDb reads parameters and returns the results in a String or writes
parameters by accepting a String expression. If the parameter contains numeric values,
the values are represented as text numbers separated by commas (in the case of
numeric arrays). If the parameter contains a single string value, the value is read into or
read from a GPL String without delimiting quotation marks. If the parameter contains an
array of strings, each string is delimited by double quotes and sequential values are
separated by commas.

As a convenient for developing custom web pages, the parameter database contains a
series of "GPL program strings" (DatalD's 1800-1819) and "GPL program variable's"
(DatalD's 1850-1869). Custom web pages can read and write these values via ASP
operations. Once the controller is restarted, the operating system does not alter any of
these variable values.

taken when writing to general database parameters. Unintentionally

f WARNING: While database values can be freely read, care should be
altering some values may cause the system to not operate properly.

Examples

Dim stg As String

Controller_PDb(541) = """'Labell"","""Label2'""" = Sets first two DOUT labels
stg = Controller.PDb(100) " stg set to "Precise Automation
Inc"”

See Also

20

Controller Class | Controller.PDbNum

Controller Class

Controller.PDbNum Property

Optimized means for setting and getting a numeric value in the configuration parameter
database.

Controller.PDbNum(dataid, unit, unit2, array_index, key) = <new_value>
Or
... Controller.PDbNum(dataid, unit, unit2, array_index)

Prerequisites
Can only access numeric parameter database values.
Parameters

dataid

A required numeric expression that specifies an Integer identification
code for the parameter to be accessed. For example, the parameter for
setting the system “test speed” is 601.

unit

An optional numeric expression that specifies an Integer unit number for
the parameter to be accessed. For many parameters, e.g. the Controller,
only a single unit exists. For parameters that refer to devices with
multiple possible units, e.g. multiple robots driven by a single controller,
this parameter ranges from 1 to n. If not specified, this value defaults to
1.

unit2

An optional numeric expression that specifies an Integer sub unit
number for the parameter to be accessed. The use of the sub unit
number is not very common and this parameter is normally just defaulted
to 1.

array_index

An optional numeric expression that specifies an Integer array index for
parameters that have multiple values. For example, for a robot with
multiple axes, the “joint maximum soft stop limits” (dataid 16077) is an
array with one value for each joint. If not specified, this value defaults to
1, the first array element.

key

21

Controller Class

An optional numeric expression that specifies an Integer key code to
override robot configuration protection and set a protected DatalD value.

Remarks

As described in the Controller Software Introduction, all of the key variables for
configuring and monitoring the operation of the system are stored in a unified parameter
database. Controller.PDbNum is an variation of Controller.PDb that has been
optimized to efficiently read and write numeric values stored in this database.

In addition to generally efficient operation, Controller.PDbNum operates especially
quickly when reading and writing the "GPL program variable's" (DatalD's 1850-

1869). These database elements have been created to allow GPL projects to interface to
custom web pages. Custom web pages can read and write these values via ASP
operations. Once the controller is restarted, the operating system does not alter any of
these variable values.

taken when writing to general database parameters. Unintentionally

f WARNING: While database values can be freely read, care should be
altering some values may cause the system to not operate properly.

Examples

Dim limit As Single
limit = Controller.PDbNum(16077,,,2) " Sets limit equal to the maximum
* allowable range of travel for jt 2

See Also

22

Controller Class | Controller.PDb

Controller Class

Controller.PowerEnabled Property

Sends a request to either turn on or off high (motor) power to the amplifier. Returns
whether high power is on or off.

Controller.PowerEnabled = <boolean_value>

Or

Controller.PowerEnabled(timeout) = <boolean_value>
Or

... Controller.PowerEnabled

Prerequisites

Enabling power via this software command is not permitted on Category 3 (CAT-3) safe
systems. For Category 3 (CAT-3) systems, a momentary contact, hardware “Enable
Power” button must be manually pressed.

Parameters
timeout
An optional numeric value that specifies the maximum time, in seconds,
to wait for power to come on. If less than or equal to zero or omitted, this
property waits forever.
Remarks

Setting the PowerEnabled property True sends a request to the control system to
enable high power to the amplifiers. For non-Category 3 (CAT-3) safe systems, high
power will be enabled only if a number of safety conditions are satisfied (e.g. no Hard E-
Stop signal is asserted, no fatal system error exists, etc.). This property waits until the
power actually comes on, with a time limit determined by the timeout parameter. If this
parameter is positive and the power does not come on within the time limit, this property
throws an exception that indicates why power did not come on.

Setting the PowerEnabled property False turns off high power to the amplifiers, but the
property does not wait until power is actually off. Unlike the Hard E-Stop signal that
delays for a fixed period of time before disabling power, turning off PowerEnabled forces
all moving robots to completely decelerate to a stop and allows time for the brakes to be
set before power to the amplifiers is disabled. Therefore, setting PowerEnabled False
allows for a more orderly stopping of motion than does a Hard E-Stop but this operation
is consequently somewhat slower.

The PowerEnabled property is automatically set to False by the system if High Power is
disabled by any means and is automatically set to True if High Power is enabled.

Examples

23

Controller Class

Dim bState As Boolean

Controller.PowerEnabled = True " Requests high power be enabled

Controller.PowerEnabled(5) = True " Requests high power be enabled
* and waits for up to 5 seconds

bState = Controller.PowerEnabled " bState will be set True if power is
" enabled, else will be set False.

See Also

Controller Class | Controller.PowerState | Controller.SoftEstop | Robot.RapidDecel

24

Controller Class

Controller.PowerState Property

Reads and returns an Integer value that indicates the current state of the amplifier high

power sequencing.

... Controller.PowerState(mode)

Prerequisites
None
Parameters

mode

An optional numeric expression that is 0 if only the power sequencing
state is to be returned or 1 if a combined power state, hard-stop indicator
and Automatic Execution Mode indicator is to be returned. By default,
this value is 0.

Remarks

In order to enable high power to the amplifiers, the system must transition in an orderly
fashion through several states to ensure that safety and hardware requirements are
satisfied. The PowerState property indicates the current state of the power sequencing.

If mode is 0, the possible values returned by this property and their interpretation are
presented in the following table (this is equivalent to "Power state" DatalD 230):

PowerState

Description (mode = 0)

System initially starting up

Power off, fatal error has occurred

Power off, power sequence restarting

Power being turned off, no fault condition has occurred

Power being turned off, a fault condition has occurred

Power is off, a fault has occurred that must be cleared

Power is off, waiting for hardware enable power switch to be turned
off

Power is off, waiting for enable power signal to be asserted

Power is coming up, enabling amplifiers

Power is on, performing motor commutation

Power is coming up, enabling servos and releasing brakes

Power is on, waiting to execute thread or Auto Execution task

PR
BlE|S|o|e|~N] o |a|s|w|v|k|o

Power is on, executing Auto Execution task

25

Controller Class

If mode is 1, the possible values returned by this property and their interpretation are
presented in the following table (this is equivalent to "Power/Auto execute state" DatalD

234):
PowerState Description (mode = 1)

0 System initially starting up

1 Power off, fatal error has occurred

2 Power off, power sequence restarting

3 Power being turned off, no fault condition has occurred

4 Power being turned off, a fault condition has occurred

5 Power is off, a fault has occurred that must be cleared

6 Power is off, waiting for hardware enable power switch to be turned
off

7 Power is off, waiting for enable power signal to be asserted

8 Power is coming up, enabling amplifiers

9 Power is on, performing motor commutation

10 Power is coming up, enabling servos and releasing brakes

11 Power is on, waiting to execute thread or Auto Execution task

12 Power is on, executing Auto Execution task

15 Power is off, a Hard E-Stop is being asserted

20 PcIJOW(ter is on, ready for a GPL project to execute and attach the
robo

21 Power is on, a GPL project is executing and has attached the robot

22 Power is on, DIO MotionBlocks is executing

23 Power is on, Automatic Analog Input Velocity mode is executing

24 Power is on, Automatic Analog Input Torque mode is executing

o5 Power is on, Automatic Master/slave mode is executing (not
implemented)

26 Power is on, CANopen via CAN net is executing (not implemented)

27 Power is on, CANopen via serial line is executing (not
implemented)

28 Power is on, robots are being homed

29 Power is on, Virtual MCP Jog Mode has control of the robot

30 Power is on, External Trajectory mode is executing

31 Power is on, Hardware MCP Jog Mode has control of the robot

Examples

Dim state As Integer
state = Controller.PowerState " Sets state to one of the values listed above

See Also

Controller Class | Controller.PowerEnabled | Controller.SoftEstop | Robot.RapidDece

26

Controller Class

Controller.RecordButton Property

Reads and writes the latched Boolean value that indicates if the hardware MCP
RECORD button has been pressed.

Controller.RecordButton = <boolean_value>
Or
... Controller.RecordButton
Prerequisites
None
Parameters
None
Remarks
Whenever the RECORD key on the Precise Hardware Manual Control Pendant (MCP) is
pressed, the value of this property is automatically set to True. This property value
remains True until it is manually set to False.
The RECORD key on the MCP and this property provide a convenient means for GPL
projects to receive a command from the operator to record key data, typically taught robot

locations.

The value of this property can also be accessed via the Parameter Database as the
"MCP Record button pressed" (DatalD 632) value.

Examples

Dim taught_loc As New Location

IT (Controller_RecordButton) Then
taught_loc.Here " Save current robot location
Controller.RecordButton = False

End if

See Also

Controller Class

27

Controller Class

Controller.ShowDialog Method - Basic Modes

Displays a pop-up dialog box on the web interface Operator Control Panel (basic modes)
Controller.ShowDialog(button_labels, message, button_index)
Or

Controller.ShowDialog(button_labels, message, button_index, text field)

Prerequisites
None

Parameters

button_labels

A required String expression containing the button labels to be

displayed. Up to 4 buttons can be specified, separated by commas. If the
button labels contain blanks or commas, they should be enclosed in
guotes. The string must not contain the vertical bar "|" character.

message

A required String expression containing the message to be displayed in
the dialog box. The string must not contain the vertical bar "|" character.

button_index

A required ByRef Integer variable that receives the index of the button
pressed in the dialog box. 1 for the first button, 2 for the second, etc.

text_field

(2nd form of this method) An optional ByRef String variable that
receives the value of any text entered into the dialog box text field. Its

initial value is shown as the default value of the text field. The string must
not contain the vertical bar "|" character.

Remarks

This method provides a simple way for a GPL procedure to communicate with the

operator without creating a custom web page. When ShowDialog is called, its operation
is as follows:

1. Waits if another thread is already displaying a dialog box.

28

Controller Class

2. Posts the dialog box for display and waits for the user to open
the Operator Control Panel on the web interface and press a
button.

3. Un-displays the dialog box.

4. Returns the button index and optional text field to the user.

Since this method generates a dialog box within a browser, any special text formatting
must be defined as standard HTML specifications. In particular, to add a carriage return
and line feed, include "
" within the text. To have a section of text left justified,
precede it with "<p align=left>" and terminate it with "</p>". The total number of
characters available for defining the dialog box including all formatting is approximately
998 hytes.

This method is overloaded to support several dialog box styles. See "ShowDialog -
Advanced " for other forms of this method.

In the simplest (1st) form, the pop-up displays only the message text and labeled buttons.
When the user clicks on one of the buttons, the index of the button clicked is returned in
the button_index variable.

In the text_field (2nd) form, the pop-up also displays a single text field that can be
overwritten by the user. When the user clicks on one of the buttons, the current value of
the text field is returned in the text_field variable, and the index of the button clicked is
returned in the button_index variable.

If the thread displaying the dialog box is paused or stopped, the dialog box is un-
displayed immediately.

Examples

Dim bi As Integer
Controller._ShowDialog(*'Okay", "Ready to begin process", bi)

29

Controller Class

30

System Messag

G Erialag

Ready to begin process

Public Sub Testl

Dim bi As Integer
Dim reply As String
reply = "Part_1" * Default is Part_ 1
Controller.ShowDialog(''Okay, Cancel', _

"“Enter part name', bi, reply)
If bi = 1 Then
. " Okay selected
Else

. * Cancel selected
End If
Console.WriteLine(''You entered: " & reply)

End Sub

Controller Class

Svstem Messages

G Dialog
Enter part name

art_1

Systom Spowd O

2000 40 S B0 YO 00 W0 100 +

See Also

Controller Class | Controller.ShowDialog - Advanced| Controller.ShowDialogMCP |
Controller.SystemMessage

31

Controller Class

Controller.ShowDialog Method - Advanced Mode

Displays a pop-up dialog box on the web interface Operator Control Panel (Advanced
Mode).

Controller.ShowDialog(mode, button_labels, message, button_index, field_labels,
field_values)

Prerequisites
None
Parameters
mode
A required numeric expression that specifies the display mode.

If mode = 1, displays a vertical list of data fields that can
be filled in by the user.

If mode = 2, displays a vertical list of up to 12 labeled
buttons.

button_labels

A required String expression. The string must not contain the vertical bar
"|" character.

If mode = 1, defines the button labels that are displayed
along the bottom of the dialog box. Up to 4 buttons can
be specified, separated by commas. If the button labels
contain blanks or commas, the labels should be
enclosed in quotes.

If mode = 2, this string is ignored and can be set to "".

message

A required String expression containing the message to be displayed in
the dialog box. The string must not contain the vertical bar "|" character.

button_index

A required ByRef Integer variable that receives the index of the button
pressed in the dialog box. Set to 1 for the first button, 2 for the second,
etc.

32

Controller Class

field_labels

A required 1-dimensional String array. Each String array element
contains a separate label. Up to 12 elements are permitted. The strings
must not contain the vertical bar "|" .

If mode = 1, the array elements define labels that are
displayed preceding each data field in the dialog box.
The number of elements in this array determines the
number of displayed fields.

If mode = 2, the array elements define labels for the
vertical list of buttons. The number of elements in this
array determines the number of displayed buttons.

field_values
A required 1-dimensional String array.

If mode = 1, this array receives the values of any text
entered into the dialog box text fields. The initial values
of this array are displayed as the default values of the
text fields. The Strings must not contain the vertical bar
"|" character.

If mode = 2, this array is ignored and may be empty.

Remarks

This method provides a way for a GPL procedure to communicate with the operator
without creating a custom web page. When ShowDialog is called, its operation is as
follows:

1. Waits if another thread is already displaying a dialog box.

2. Posts the dialog box for display and waits for the user to open
the Operator Control Panel on the web interface and click on a
button.

3. Un-displays the dialog box.

4. Returns the button index and optional text field information to the
user.

Since this method generates a dialog box within a browser, any special text formatting
must be defined as standard HTML specifications. In particular, to add a carriage return
and line feed, include "
" within the text. To have a section of text left justified,
precede it with "<p align=left>" and terminate it with "</p>". The total number of
characters available for defining the dialog box including all formatting is approximately
998 bytes.

This method is overloaded to support several dialog box styles. See "ShowDialog -
Basic" for other forms of this method.

In this form, the dialog box allows different displays based on the mode parameter value.

If mode = 1, multiple fields may be entered and multiple values are
returned. When the user clicks on one of the buttons, the values of all the

33

Controller Class

fields are returned in the field_values array, and the index of the button
clicked is returned in the button_index variable.

If mode = 2, a vertical array of buttons is displayed, with the field_labels
text values displayed next to each button. The index of the button clicked
is returned in the button_index variable. The field_values parameter is
not used.

If the thread displaying the dialog box is paused or stopped, the dialog box is un-
displayed immediately.

Examples

Public Sub Test2
Dim Buttons As String = "Okay, Cancel"
Dim Text As String = "Enter the field values"
Dim Label(2) As String
Dim Field(2) As String
Dim Index As Integer

Label (0) = "X value"
Label (1) = "Y value"
Label (2) = ""Z value"
Field(0) = "100.0"
Field(1) = "100.0"
Field(2) = "0.0"

Controller.ShowDialog(l, Buttons, Text, Index, Label, Field)

Console.WriteLine(''Button: " & CStr(Index))

Console_WriteLine("Field 0: " & Field(0))

Console.WriteLine("'Field 1: " & Field(1))

Console.WriteLine("Field 2: " & Field(2))
End Sub

System Messages

| Enter the field values

| Description | Value
!x valug fio0.0

lhlaluan 100.0

[

[z vahue oo

Public Sub Test3

34

Controller Class

Dim Text As String = "Select operation to perform."
Dim Label(2) As String

Dim Nop() As String

Dim Index As Integer

Label (0) = "'Start"
Label (1) = "'Stop"
Label (2) = "Exit"

Controller.ShowDialog(2, "', Text, Index, Label, Nop)

Console.WriteLine("'Button: " & CStr(Index))
End Sub

vstem Messages

GPL Dialog

Select operation to perform.
Start
Stop

See Also

Controller Class | Controller.ShowDialog - Basic | Controller.ShowDialogMCP |
Controller.SystemMessage

35

Controller Class

Controller.ShowDialogMCP Method

Displays a pop-up dialog box on the LCD display of the Precise Hardware Manual
Control Pendant.

Controller.ShowDialogMCP(button_mask, message, button_return)
Or
Controller.ShowDialogMCP(button_mask, message, button_return, text field)

Prerequisites

Precise Hardware Manual Control Pendant must be connected to the controller.

Parameters

button_mask

A required Integer expression whose bits specify the MCP key presses
that will terminate the dialog box. A value of -1 indicates that the
maximum number of keys are permitted to terminate the dialog process.

message

A required String expression containing the message to be displayed on
the LCD display. If a text_field is specified, the message must include a
substring (‘##...##'") that defines where the characters of the text_field are
output in the MCP display. The number of pound signs (#) defines the
width of the input field.

button_return

A required ByRef Integer variable that receives the bit flag that indicates
the button that was pressed to terminate the dialog operation.

text_field

An optional ByRef String variable that receives the value of any text
entered into the dialog box text field. The initial value of this variable is
displayed as the default value of the text field. Given the key pad layout
of the Precise MCP, the text_field can only contain a numeric value that
consists of 0-9, ., + or - characters.

Remarks

This method provides a simple way for a GPL procedure to communicate with the
operator via the Precise Hardware Manual Control Pendant. (Note: If you wish to

36

Controller Class

develop a more sophisticated interface, please refer to the /dev/mcp communication
device.)

When ShowDialogMCP is called, its operation is as follows:

1. Waits if another thread is already displaying a MCP dialog box.

2. Replaces the standard MCP display with the contents of the
message and the optional embedded text_field, and lights the
LED on the APP key.

3. If the optional text_field is defined, accepts presses of the 0-9, .,
+, - or DEL keys and presents the results in the LCD display.

4. If the display and keypad are switched back to their standard
mode due to a manual control operation or error message, blinks
the APP key LED until the APP key is pressed to re-display the
dialog.

5. When one of the specified termination keys is pressed, un-
displays the dialog box.

6. Returns the termination key button bit flag and the optional text
field value.

The MCP keypad buttons that can be specified to terminate the dialog mode are listed in
the following table together with their associated button_mask and button_return values.

button_mask&

ey Lebe button_return
Enter &H000001
Record &H000002
Yes &H000004
No &H000008
Quit &H000010
Prev &H000020
Next &H000040
F1 &H010000
F2 &H020000
F3 &H040000
F4 &H080000

By default, when a dialog is first displayed on the MCP, a beep is generated to alert the
operator. The beeping operation can be suppressed by resetting the "Beep MCP when
APP mode started" (DatalD 636) system parameter.

If the thread displaying the dialog box is paused or stopped, the dialog box is un-
displayed immediately.

Examples

Dim but As Integer

Dim ss, CRLF As String

CRLF = Chr(GPL_CR) & Chr(GPL_LF)

ss = " Ready to begin" & CRLF & CRLF _
& " <Yes> or <No>"

Controller._ShowDialogMCP(&H4+&H8, ss, but)

37

Controller Class

Dim but As Integer
Dim reply, ss, CRLF As String
CRLF = Chr(GPL_CR) & Chr(GPL_LF)
ss = " Enter part number:" & CRLF _
& " TH#HHHH#H#T" & CRLF & CRLF _
& " <Enter> or <Quit>"
reply = "12" * Default reply value
Controller._ShowDialogMCP(&H1+&H10, ss, but, reply)
If but = &H10 Then
Console.Writeline(''Request cancelled™)
Else
Console.WriteLine("'You entered: " & reply)
End If

See Also

Controller Class | Controller.ShowDialog | Controller.SystemMessage | /dev/mcp Device

38

Controller Class

Controller.SleepTick Method

Delays further execution of a thread for a specified number of Trajectory Generator
periods.

Controller.SleepTick(ticks)
Or
Controller.SleepTick

Prerequisites

None
Parameters
ticks
An optional numeric expression that specifies an Integer number of
Trajectory Generator periods that execution is to be delayed. If this
parameter is not specified, the value is defaulted to 1.
Remarks

Often times, a program must poll input data values periodically. While it is possible to use
a “busy loop” that counts for a fixed number of times, this technique unnecessary
consumes CPU time that could be more productively spent by system drivers or other
GPL threads. The SleepTick method allows a thread to relinquish control of the CPU for
a specified period of time and then resume execution at the next sequential statement.

Since many operations are synchronized to the operation of the Trajectory Generator, the
delay time for this method is specified in units of Trajectory Generator execution periods.

Please note that other programming languages like Basic typically have other means for
putting a thread to sleep for a specified period of time.

Examples

Controller._.SleepTick Delays thread execution until
after the start of the next
trajectory cycle

Delays thread execution for

approximately 2 seconds

Controller.SleepTick (2/Controller.Tick)

See Also

Controller Class | Controller.Tick | Controller.Timer

39

Controller Class

Controller.SoftEStop Property

Reads and writes the Boolean value that triggers a Soft E-Stop condition when True.

Controller.SoftEStop = <boolean_value>
Or
... Controller.SoftEStop

Prerequisites

None

Parameters

None

Remarks

A Soft E-Stop initiates a rapid deceleration of all robots currently in motion and generates
an error condition for all GPL programs that are attached to a robot. This property can be
used to quickly halt all robot motions in a controlled fashion when an error is detected.

This function is similar to a Hard E-Stop except that Soft E-Stop leaves High Power
enabled to the amplifiers and is therefore used for less severe error conditions. Leaving
power enabled is beneficial in that it prevents the robot axes from sagging and does not
require high power to be manually re-enabled before program execution and robot
motions are resumed. This function is also similar to a Rapid Deceleration feature except
that a Rapid Deceleration only affects a single robot and no program error is generated.

If set, the SoftEStop property is automatically cleared by the system if High Power is
disabled and re-enabled.

Examples

Dim bState As Boolean

Controller.SoftEStop = True " Triggers a Soft E-Stop condition

bState = Controller.SoftEStop " bState will be set True since a
" Soft E-Stop has been asserted

See Also

40

Controller Class | Controller.PowerEnabled | Controller.PowerState| Robot.RapidDecel

Controller Class

Controller.SystemMessage Method

Enters a message into the GPL system message log that is displayed on the web
Operator Control Panel.

Controller.SystemMessage(message)

Prerequisites

None
Parameters
message
A required String expression containing the message to be entered into
the message log.
Remarks

This method enters a line into the system message log with other system messages and
error message entries. The system message log is kept sorted in time order. This log is
displayed by the Operator Control Panel in the System Messages box.

Examples

Controller.SystemMessage(''Cycle time: " & CStr(now-saved))

Controller.SystemMessage(‘'Operation complete™)
See Also

Controller Class | Controller.ErrorLog | Controller.ShowDialog | Controller.ShowDialogMCP

41

Controller Class

Controller.SystemSpeed Property

Sets and gets the property that can reduce the speed of all robot motions.

Controller.SystemSpeed = <new_%_value>
Or
... Controller.SystemSpeed

Prerequisites

None

Parameters

None

Remarks

The SystemSpeed property permits all position and velocity controlled motions for all
robots to be operated at a reduced speed without altering the path that each

follows. This property is provided as a debugging tool to permit all motions to be
executed slowly and then gradually increased to full speed.

This value is specified as a percentage from 1 to 100 where 100 represents full speed as
defined in the motion program being executed. This parameter can also be modified via
the web Operator Control Panel as well as the "System wide test speed in %" (DatalD
601).

When a new value is specified, the change in the motion speeds is gradually put into
effect based upon the setting of the "Rate of change of test speed in %/sec" (DatalD 602)
to avoid excessive accelerations.

Examples

Controller.SystemSpeed = 50 * All motions at half speed

See Also

42

Controller Class

Controller Class

Controller.Tick Property

Double value that specifies the execution period for the Trajectory Generator in seconds.
...Controller.Tick

Prerequisites
None

Parameters
None

Remarks

The Trajectory Generator is the task that evaluates robot motion plans and generates the
series of individual commands to move each joint of each robot along its designated path.
To accomplish this task, the Trajectory Generator executes at a configurable repetition
rate. The Tick property returns the period of the repetition rate in seconds. Typically this
will be set to a value of 0.002 or 0.004 seconds.

Examples

Dim period As Double

period = Controller.Tick " Sets period equal to the Trajectory
" Generator execution period, e.g. 0.004
" seconds
See Also

Controller Class | Controller.SleepTick | Controller.Timer

43

Controller Class

Controller.Timer Property

Returns the current value of the controller’s clock, in units of seconds quantiized into 125
usec intervals, as a Double.

...Controller.Timer(select)

Prerequisites

None
Parameters
select
An optional numeric value that selects the reference time for the value
returned. Set to 0 to return the seconds since January 1, 1988 based
upon the time-of-day setting. Set to 1 to return the seconds since the
controller was booted. If omitted, this value defaults to 0.
Remarks

This method reads the current value of the controller’s clock and returns the time in units
of seconds. This value is quantized into 125 psec intervals, the system clock tick period.

If select = 0, this property returns the time since January 1, 1988, according to the
system time-of-day setting. If you change the current time-of-day (using the Date console
command, the web interface, or DatalD 121), the next time this property is read, its value
will reflect the change in the time-of-day setting. This value is useful for generating
absolute timestamps. This value is not recommended for computing incremental time
differences such as time delays and time outs since altering the time-of-day during the
delay will result in unexpected results. Given the number of significant bits in a Double,
this Timer value will not lose accuracy until approximately the year 2124.

If select = 1, this property returns the time since the controller was booted. The starting
point never changes until the controller is rebooted, so this value is useful for computing
time differences and timeout checking. Changing the time-of-day does not affect this
value, so it is recommended that it be used for computing time differences. Given the
number of significant bits in a Double, this Timer value will not lose accuracy until the
controller has been running for 136 years.

Examples

44

Dim StartTime, ElapsedTime As Double

StartTime = Controller.Timer(l) " Reads controller clock
Controller._SleepTick(2/Controller.Tick) * Sleep for about 2 seconds
ElapsedTime = Controller.Timer(1l)-StartTime * Value will be approx 2

Controller Class

Dim EndTime As Double
EndTime = Controller.Timer(1) + 5 " Timeout 5 seconds from now
While Signal .DIO(my_sig) = 0
IT Controller.Timer(1) > EndTime Then
" Timeout error handler
Exit While
End If
Thread.Sleep(100) " Wait 100 msec
End While

See Also

Controller Class | Controller.SleepTick | Controller.Tick

45

Controller Class

Controller.Unload Method

Unloads the files and data associated with a GPL project from memory.

Controller.Unload(project_name)

Prerequisites

No procedures in this project can be currently executing.

Parameters

project_name

A required string expression that contains the name of the project to be
unloaded.

Remarks

This method unloads a project by removing all of its associated data from the controller's
memory and removing all associated files from the GPL project memory area.

This method throws an exception if any procedure in this project is currently
executing. No exceptions are thrown if the project is not currently loaded or does not
exist.

Examples

Dim th As Thread

Controller._Load(""/flash/projects/Test')

th = New Thread(*'Main", "Test', "Thread2'™)

th.Start()

th.Join(0) " Wait for thread to complete
Controller.Unload("Test")

See Also

46

Controller Class | Controller.Load | Thread.Join

Exception Handling

Exception Handling Summary

The following pages provide detail information on the exception handling instructions and
the properties and methods of the Exception Class. The exception handling statements
provide a structured means for a procedure to detect and respond to program execution
exceptions that would otherwise cause the procedure to halt execution. When an
exception occurs, information on the cause of the exception can be automatically saved
in an Exception Object and execution can be branched to a block of code designed to
service the exception.

Exception Objects have two basic forms: a general Exception and a robot
Exception. Both forms store a numerical code that indicates the type of exception. In
addition, the robot Exception includes the number of the robot and the axes that are
associated with the exception. The general form of the Exception includes a Qualifier
value that can provide addition information on the nature of the exception.

The table below briefly summarizes the exception handling statements that are described
in greater detail in the following pages.

Statement Description
Used within a Try...Catch...Finally...End Try series of
Catch statements to mark the start of the block of instructions
executed when an exception occurs.
End Try Marks the end of the exception handling structure.
Exit Tr _Termingtes the execution of a Try or Catch block of
a— instructions.

Used within a Try...Catch...Finally...End Try series of
statements to mark the start of the block of instructions that is

Finally always executed at the completion of the Try or Catch
blocks.
Throw Generates a program execution exception.

Exception handling structure that captures execution
Try...Catch...Finally...lexceptions within a block of instructions and executes
statements to field the exception if necessary.

The table below briefly summarizes the properties and methods of the Exception Class
that are described in greater detail in the following pages.

Member Type Description
Sets and gets a bit mask indicating the
exception _obj.Axis Property [robot axes associated with a robot
Exception.

47

Exception Handling

48

Method that returns a copy of the

exception_obj.Clone Method ; .
exception_obj.
exception obi.ErrorCode Property Sets and gets the number of the error
message.
Returns the full text string that is
exception_obj.Message Method |generated based upon the
exception_obj properties.
. . s Sets and gets the error message
exception_obj.Qualifier Property qualifier for a general Exception.
Sets and gets the Boolean that
exception_obj.RobotError Property [indicates if an Exception is a robot or
general type.
. . Sets and gets the number of the robot
exception_obj.RobotNum Property associated with a robot Exception.
Updates a general (vague) Exception
exception_obj.UpdateErrorCodefMethod [error code with a more specific error

code.

Exception Handling

Catch Statement

Used within a Try...Catch...Finally...End Try series of statements to mark the start of the
block of instructions executed when an exception occurs.

Catch exception_object

Prerequisites

Must always follow a Try statement block. Either a Catch or Finally statement or one of
each must appear in a Try structure.

Parameters
exception_object

Required Exception Object. The exception_object must already have a
data section allocated prior to the execution of this instruction, i.e. the
New qualifier should have been previously used in a Dim statement to
instantiate the Object.

Remarks

The Catch statement marks the start of the block of instructions that is executed if an
exception occurs during the execution of the corresponding Try block of instructions. If
the Catch block is triggered, the information on the execution exception is automatically
stored into the exception_object.

If an exception occurs during the execution of the Catch block of statements, thread
execution will be terminated unless the violating instructions are themselves contained
within a Try structure or if a higher-level Try structure exists.

At the completion of the Catch block, the statements in the following Finally block are
executed if they exist, otherwise execution continues at the first step following the
associated End Try.

Please see the documentation on the Try...Catch...Finally...End Try Statements for
further information on the use of this statement.

See Also

Exception Handling | Try...Catch...Finally...End Try Statements

49

Exception Handling

End Try Statement

This statement marks the end of the exception handling structure.
End Try

Prerequisites
Must always follow a Catch or Finally statement block.
Remarks

Please see the documentation on the Try...Catch...Finally...End Try Statements for
further information on the use of this statement.

See Also

Exception Handling | Try...Catch...Finally...End Try Statements

50

Exception Handling

Exit Try Statement

This statement terminates the execution of either a Try or a Catch block of instructions.
Exit Try

Prerequisites

Can only be specified within a Try or Catch block of instructions. In particular, this
instruction is illegal within a Finally block.

Remarks

If this statement is executed within a Try or a Catch block of instructions, statement
execution immediately branches to the first statement in the Finally block or, if the
Finally block is not defined, the first statement following the subsequent End Try.

Please see the documentation on the Try...Catch...Finally...End Try Statements for
information on the general format of the exception handling structure.

See Also

Exception Handling | Try...Catch...Finally...End Try Statements

51

Exception Handling

Finally Statement

Used within a Try...Catch...Finally...End Try series of statements to mark the start of the
block of instructions that is always executed at the completion of the Try or Catch blocks.

Finally

Prerequisites

Must always follow a Try or Catch statement block. Either a Catch or Finally statement
or one of each must appear in a Try structure.

Remarks

The Finally statement marks the start of the block of instructions that is always executed
after the successful execution of a Try series of statements or at the completion of the
Catch series of statements. This allows a program to specify a series of statements that
are guaranteed to be executed before execution continues following the End Try
statement.

Please see the documentation on the Try...Catch...Finally...End Try Statements for
further information on the use of this statement.

See Also

Exception Handling | Try...Catch...Finally...End Try Statements

52

Exception Handling

Throw Statement

Generates a program execution exception.

Throw exception_object

Prerequisites
None
Parameters
exception_object

Required Exception Object. The Exception can contain either a
general or a robot formatted error.

Remarks

This statement can be included in any procedure and need not be contained within a
Try...Catch...Finally...End Try structure. Whenever it is executed, a program exception
is immediately signaled. If this statement is not executed within a Try block, execution of
the thread is terminated and the error contained within the exception_object is reported to
the operator.

The Throw statement is often used within a Catch block. If the Exception captured by
the Catch is not to be processed by the Catch block, the Exception can be reissued by
a Throw statement. This allows Exceptions that are not to be serviced by a Catch to be
passed to a higher-level Catch or to halt thread execution.

To allow application programs to generate their own special Exceptions, two error codes
exist that are never automatically generated by the controller:

(-786) *Project generated error*
(-1038) *Project generated robot error*

These error codes can be emitted by the Throw instruction to alert the operator to special
exception conditions not normally detected by GPL.

If the ErrorCode property of the Exception Object parameter is not a negative value,
the error -807 "Invalid exception" is thrown. If you have just created the object, the value
of ErrorCode is zero by default, so you must explicitly set it to avoid this error.

Examples

53

Exception Handling

Dim excl As New Exception

Try
retry:
Move.Loc(locl, profilel)
Move .Wai tForEOM
Catch excl
I (excl.ErrorCode = -153) Then " Soft envelope error?
profilel.Speed *= .9 - Yes, reduce speed
GoTo retry
End If
Throw excl * Emit unknown error
End Try

See Also

Exception Handling

54

Exception Handling

Try..Catch..Finally..End Try Statements

Exception handling structure that captures execution exceptions within a block of
instructions and, if necessary, executes statements to field the exception.

Try
[try_statements]

[Catch exception_object
[catch_statements]]

[Finally
[finally_statements]]

End Try

Prerequisites

If "Break on exception code" (DatalD 307) is set or if an application is started in GDE with
"Break on exception" enabled, any active Try...Catch structures are ignored. These
features are provided as debugging and diagnostic aids.

Parameters
try_statements

Optional statement or list of statements whose exceptions, if any, will be
handled by another block of code rather than immediately resulting in the
termination of thread execution.

exception_object

Exception Object, required if the Catch statement is defined. When an
exception occurs during the execution of the try_statements, the
exception description is automatically stored in the exception_object prior
to the execution of the catch_statements. The exception_object must
already have a data section allocated prior to the execution of the Catch,
i.e. the New qualifier should have been previously used in a Dim
statement to instantiate the Object.

catch_statements

Optional statement or list of statements that are executed if an exception
occurs during the execution of the try_statements.

finally_statements

Optional statement or list of statements that are always executed at the
successful completion of the try_statements or the completion of the
catch_statements.

55

Exception Handling

Remarks

If an exception of any type occurs when the try statements are executed, rather than
halting execution and reporting the error, the system automatically stores the exception
information in the exception_object and branches execution to the start of the
catch_statements. The catch_statements can test the exception_object to determine the
nature of the exception and then perform whatever corrective action is necessary. If the
try_statements complete execution without an error or when the catch_statements
complete execution after an exception, the finally_statements are always executed to
perform any required cleanup. At the completion of the finally_statements, regular
instruction execution continues at the first statement following the End Try.

A Try structure must contain either a single Catch statement or a single Finally
statement or one of each type of statement. If a Catch statement is specified, it must
always include an exception_object.

Try structures can be nested within each other to an arbitrary depth. For example, a Try
structure can be contained within the catch_statements of another, higher-level Try
structure. Also, procedure calls can be contained within any of the statement blocks
including the try_statements.

If an exception occurs within a procedure that is invoked within a Try structure with a
Catch, the execution of the procedure is immediately terminated and execution will
continue at the first instruction in the catch_statements in the calling procedure. This
feature allows a single Try Catch to be placed at a very high-level and capture any
exceptions in any lower level routines. This case is illustrated in Example #1 below.

Alternately, if the called procedure generates an exception within a Try structure with a
Catch, the catch_statements within the called routine will service the

exception. However, if an exception occurs in a called procedure within a Try without a
Catch but with a Finally, the finally_statements in the called routine will be executed first,
then execution of the called procedure will be terminated, after which execution will
continue in the catch_statements of the calling procedure. This case is illustrated in
Example #2 below.

There are special limitations on the use of GoTo instructions in connection with Try
structures. A GoTo contained in the catch_statements can branch execution into the
corresponding try_statements. Also, GoTo's can be contained in the try_statements,
catch_statements, and the finally_statements so long as the branch is to an instruction
within the same block of statements. All other branching into and out of the Try
statement blocks and the main code is not permitted, e.g. you cannot branch from
outside of a Try structure into the try_statements or out of the try_statements into the
finally_statements. These special limitations are illustrated in Example #3 below.

Lastly, an Exit Try statement is provided for prematurely terminating a series of
try_statements or catch_statements. When this instruction is executed in either the
try_statements or the catch_statements, execution branches and continues at the first
statement in the finally_statements. Exit Try instructions are not permitted in the
finally_statements.

Examples

56

Example #1

Public Sub MAIN

Dim excl As New Exception
Try
test()
Console.WriteLine("Test completed™) *
Catch excl
Console.WriteLine(""Exception!') -
End Try
End Sub

Public Sub test()
Dim ii As Integer

ii=1/70 -
Console._WriteLine("Inside Test') b
End Sub
Example #2

Public Sub MAIN
Dim excl As New Exception
Try
test()
Console.WriteLine("Test completed™) *
Catch excl
Console.WriteLine("'Exception!')
End Try
End Sub

Public Sub test()
Dim ii As Integer

Try
iim=1/70 -
Console.WriteLine("Inside Test') -
Finally
Console._WriteLine("Finally in Test'™) *
End Try
Console.WriteLine(''Test done') -
End Sub
Example #3

Dim excl As New Exception
Dim index As Integer
Robot._Attached = 1
Try
retry:
Move.Loc(locl, profilel)
Move .WaitForEOM
Catch excl
Control ler.SystemMessage(excl.Message)

Never gets here

Is executed

Generates exception
Never gets here

Never gets here

Is executed

Generates exception
Never gets here

Is executed

Never gets here

Controller.ShowDialog("'Ok,Cancel™,""Retry?", index)

IT index = 1 Then
IT Robot.Attached = 0 Then

Controller.PowerEnabled = True

Robot._Attached = 1
End If
GoTo retry -
End If
GoTo bad_jump
End Try
bad_jump:

See Also

LEGAL BRANCH

ILLEGAL BRANCHI!!

Exception Handling | Exit Try Statement | Throw Statement

Exception Handling

57

Exception Handling

exception_object.Axis Property

Sets and gets a bit mask indicating the robot axes associated with a robot Exception.

exception_object.Axis = <new_hitmask_value>
Or
...exception_object.Axis

Prerequisites

Only valid for robot Exceptions.
Parameters

None
Remarks

For robot Exceptions, the Axis property specifies the robot axes or motors that are
associated with the error condition. This value is a bit mask where the least significant bit
(&H1) represents the first axis or motor. Up to 12 bits can be set and multiple bits can be
set at the same time. For example, when the error code is -1012 (Joint out-of-range), the
AXis property bits indicate the which axes have violated their software ranges of motion.

When a New Exception is created, it defaults to a general Exception not a robot. When
an Exception is set to a robot type, the Axis bits are initially all set to 0.

Examples

Dim excl As New Exception
excl.RobotError = True
excl.ErrorCode = -1012
excl_Axis = &HA
Console.WriteLine(excl.Message)

Create new general exception
Indicate its a robot error
Joint out-of-range

Specify axes 2 and 4

Joint out-of-range Robot 1: 2 4

See Also

Exception Handling | exception object.RobotError | exception object.RobotNum

58

Exception Handling

exception_object.Clone Method

Method that returns a copy of the exception_object.
...exception_object.Clone

Prerequisites
None
Parameters
None
Remarks
For objects, if a program contains a simple assignment statement:
object_1 = object_2

the result is that object_1 points to the same data as object 2. Any subsequent change of
a property in either object_1 or object_2 affects the data associated with both objects.

If you wish to make an independent copy of an object, the Clone method is the standard
means for performing this operation:

object_1 = object_2.Clone

Examples
Dim excl As New Exception " Create new exception with data
Dim exc2 As Exception " Create new exception with no data
excl.ErrorCode = -1002 * *Invalid axis* error code

excl.RobotError = True

exc2 = excl.Clone

exc2.Axis = &HC
Console.WriteLine(excl.Message)
Console.WriteLine(exc2.Message)

Makes a copy of excl data
Does not affect excl data
Invalid axis Robot 1
Invalid axis Robot 1: 3 4

See Also

Exception Handling

59

Exception Handling

exception_object.ErrorCode Property

Sets and gets the number of the error message.

exception_object.ErrorCode = <new_value>
Or
...exception_object.ErrorCode

Prerequisites

None

Parameters

None

Remarks

The ErrorCode property of an Exception is the primary value that indicates the type of
exception that is represented by the exception_object. This value can range from 4095
to -4095 and each utilized value has a text string associated with it for display
purposes. In most cases, the ErrorCode is further qualified by additional information
such as a robot number, axis number or other information.

To facilitate the interpretation of the ErrorCodes, positive values indicate success or
warning conditions and negative numbers indicate an error of some type. A value of O is
the general success code.

For a full listing of the defined ErrorCode values, please see the "System Error Codes"
section of the Precise Documentation Library.

When a New Exception is created, it defaults to a general Exception with an ErrorCode
value of O (success).

Examples

Dim excl As New Exception
excl._ErrorCode = -786
excl.Qualifier = 8
Console.WriteLine(excl.Message)

Create new general exception
Project generated error
Specify the qualifier
Project generated error: 8

See Also

60

Exception Handling

Exception Handling

exception_object.Message Method

Returns the full text string that is generated based upon the exception_obj properties.
...exception_object.Message

Prerequisites
None

Parameters
None

Remarks

Given any exception_obiject, this method interprets the ErrorCode and any defined
refinement information such as the RobotNum, Axis, or Qualifier properties as
appropriate and returns the equivalent text string that is normally output to indicate this
exception.

Examples

Dim excl As New Exception
excl.RobotError = True
excl.ErrorCode = -1012
excl_Axis = &HA
Console.WriteLine(excl.Message)

Create new general exception
Indicate its a robot error
Joint out-of-range

Specify axes 2 and 4

Joint out-of-range Robot 1: 2 4

See Also

Exception Handling

61

Exception Handling

exception_object.Qualifier Property

Sets and gets the error message qualifier for a general Exception.

exception_object.Qualifier = <new_value>
Or
...exception_object.Qualifier

Prerequisites

Only valid for general Exceptions. Not valid for robot Exceptions.
Parameters

None
Remarks

For general Exceptions, the Qualifier property specifies an additional number that can
be used to further refine the meaning of an error condition. This value is stored as a 16-
bit unsigned number and can therefore range from 0 to 65535. For example, when the
error code is -786 (Project generated error), the Qualifier property can be used by the
GPL Project to convey which of several different special error conditions was detected.

When a New Exception is created, it defaults to a general Exception with a Qualifier
property of 0. When an Exception is changed from a robot to a general type, the
Qualifier value is reset to 0.

Examples

Dim excl As New Exception
excl.ErrorCode = -786
excl.Qualifier = 8
Console.WriteLine(excl.Message)

Create new general exception
Project generated error
Specify the qualifier
Project generated error: 8

See Also

Exception Handling | exception object.RobotError

62

Exception Handling

exception_object.RobotError Property

Sets and gets the Boolean that indicates if an Exception is a robot or general type.

exception_object.RobotError = <boolean_value>
Or
...exception_object.RobotError

Prerequisites
None

Parameters
None

Remarks

Setting the RobotError property of an exception_object to True indicates that it is a robot
Exception and therefore has a RobotNum and an Axis property. Otherwise, setting
RobotError to False indicates that the exception_object is a general Exception and has
a Qualifier property.

Both robot and general Exceptions have the same effect in terms of halting thread
execution and disabling robot power. The only difference between the two types of
Exceptions is which additional properties exist to further refine the interpretation of the
error code.

When a New Exception is created, it defaults to a general Exception. To switch
between robot and general Exception types, the RobotError property should be set as
needed.

Examples

Dim excl As New Exception
excl.RobotError = True
excl.ErrorCode = -1006
excl_RobotNum = 3
Console.WriteLine(excl.Message)

Create new general exception
Indicate its a robot error
Robot already attached
Specify the robot

Robot already attached Robot 3

See Also

Exception Handling

63

Exception Handling

exception_object.RobotNum Property

Sets and gets the number of the robot associated with a robot Exception.

exception_object.RobotNum = <new_value>
Or
...exception_object.RobotNum

Prerequisites

Only valid for robot Exceptions.
Parameters

None
Remarks

For robot Exceptions, the RobotNum property specifies the number of the robot
associated with the error condition. This value can range from 0 to 16. A value of 0
indicates that it is a conveyor belt and values from 1 to 16 specify regular robot
numbers. For example, when the error code is -1006 (Robot already attached), the
RobotNum property indicates which robot was being accessed when this error was
generated.

When a New Exception is created, it defaults to a general Exception not a robot. When
an Exception is set to a robot type, the RobotNum value is initially set to 1.

Examples

Dim excl As New Exception
excl.RobotError = True
excl.ErrorCode = -1006
excl_RobotNum = 3
Console.WriteLine(excl.Message)

Create new general exception
Indicate its a robot error
Robot already attached
Specify the robot

Robot already attached Robot 3

See Also

Exception Handling | exception object.RobotError | exception object.Axis

64

Exception Handling

exception_object.UpdateErrorCode Method

Updates a general (vague) Exception error code with a more specific error code.
Replaces error codes -1029, -1030, or -1043, if possible.

...exception_object.UpdateErrorCode

Prerequisites
None

Parameters
None

Remarks

Because GPL responds as quickly as possible to error conditions and contains many
independent threads, when an exception is thrown, a user thread may not immediately
know the exact reason for the exception. In this case, GPL reports one of three generic
error codes:

1. -1029: Asynchronous error
2. -1030: Fatal asynchronous error
3. -1043: Asynchronous soft error

Several milliseconds later, the specific error code is normally available, but the system
does not wait for this information before initiating a reaction, such as decelerating the
robot.

The UpdateErrorCode method checks an Exception object’s error code to see if it
matches one of the generic error code values listed above. If so, by analyzing error
message timestamps, it replaces the generic error code with any more specific error code
that has become available.

This is a convenience method that eliminates the need to develop software to utilize the
Controller.ErrorLog property to scan posted errors for more specific error information.

Examples

Dim exc As Exception

Dim my_loc As Location

Dim my_prof As Profile

Try
Move.Loc(my_loc, my_prof)

Catch exc
" Perform time-critical exception handling here
Console.WriteLine(exc.ErrorCode) " Show initial error

65

Exception Handling

Thread.Sleep(10) " Wait for errors to propagate
exc.UpdateErrorCode
Console.WriteLine(exc.ErrorCode) * Show final error

End Try

See Also

Exception Handling | Controller.ErrorLog

66

File and Serial I/O Classes

File and Serial 1/0 Classes Summary

The following pages provide detailed information on the properties and methods for the
various classes that implement both file and serial port input and output communications.

The File Class is designed specifically for managing disk files and disk file

directories. The StreamReader and StreamWriter Classes apply to both file and serial

communications.

The tables below briefly summarize the properties and methods for each Class, which
are described in greater detail in the following sections.

File Class Member Type Description
File.Co Shared Copies a single file on devices like the flash
e Method disk and ROMDISK.
File.CreateDirectory Shared C_reates a file directory and the path to the
Method directory.
File.DeleteDirectory Shared Deletes a single, empty file directory
- Method ' '
: . Shared . .
File.DeleteFile Method Deletes a single file.
File. GetDirectories Shared Returns an array pf strings containing the
Method names of directories in a directory.
File GetFiles Shared Returns an array of strings containing the
e Method names of files in a directory.
StreamReader Member Type Description
New StreamReader Constructor Opens a file or serial port device for
Method reading.
streamreader obj.Close Method Closes the file or dgwce associated with a
StreamReader Object.
streamreader obj.Peek Method Rgturns the next byte from an input stream
without removing it from the stream.
streamreader obj.Read Method Returns the next byte from an input stream

and removes it from the stream.

streamreader obj.ReadLineMethod

Reads a line from the input stream
terminated by LF, CR, or CR-LF.

StreamWriter Member Type Description
New StreamWriter Constructor Opgns a file or serial port device for
Method writing.

67

File and Serial I/O Classes

68

Sets or gets the property that controls

streamwriter_obj.AutoFlush(Property Wwhether or not output is buffered,
: . Closes the file or device associated with a
streamwriter_obj.Close Method StreamWriter Object.
streamwriter obi.Flush Method Immed|atel_y writes any buffered data for a
StreamWriter Object.
Sets or gets the property that controls how
streamwriter_obj.NewlLine [Property lines are terminated by the WriteLine
method.
streamwriter _obj.Write Method Writes a ngmber or a String 1o an output
device or file.
\Writes a number or a String to an output
streamwriter_obj.WriteLine [Method device or file, followed by the NewLine

line terminator.

File and Serial I/O Classes

File.Copy Method

Copies a single file on devices like the flash disk and ROMDISK.
File.Copy (source_file, destination_file, overwrite)

Prerequisites
None

Parameters
source_file

A required String expression. Contains the fully specified path and file
name of an existing file to be copied.

destination_file

A required String expression. Contains the fully specified path and file
name of the destination file.

overwrite

An optional numeric expression. If zero (False), the destination file is not
overwritten if it already exists. If non-zero, the destination file is
overwritten if it already exists.

Remarks

This method copies a single file stored on a device like the flash disk or ROMDISK. A
wild card specification of multiple files is not permitted.

The complete path must be specified for both the source and destination. There are no
defaults for any fields.

If a directory in the destination path does not exist, the directory is not created and the
copy fails with an error.

Examples

File.Copy("'/flash/projects/Hello/Main.gpl", _
"/flash/Test_gpl", True)

File.Copy(''/flash/projects/Hello/Main.gpl", _
"/ROMDISK/Test.gpl', False)

69

File and Serial I/O Classes

See Also

File and Serial 1/0

70

File and Serial I/O Classes

File.CreateDirectory Method

Creates a file directory and the path to the directory.
File.CreateDirectory (path)

Prerequisites

Directories can only be created on the devices "/ROMDISK", "/flash", and "/GPL".

Parameters
path
A String that contains the path for the directory to create, beginning with
the device name and ending with the new directory name.
Remarks

This method creates a directory in the location specified by the path parameter. If any
intermediate directories in the path are undefined, they are automatically created.

An error occurs if the final directory already exists.
If any error occurs, this method throws an Exception.

Examples

File.CreateDirectory(""/ROMDISK/temp/new_directory') " Create "new_directory"
" Also creates "temp"” if needed

See Also

File and Serial 1/0 | File.DeleteDirectory

71

File and Serial I/O Classes

File.DeleteDirectory Method

Deletes a single, empty file directory.
File.DeleteDirectory (path)

Prerequisites

The directory must be empty.

Parameters
path
A String that contains the path for the directory to delete, beginning with
the device name and ending with the new directory name.
Remarks

This method deletes a single directory in the location specified by the path parameter,
provided that the directory is empty. If any files or sub-directories exist within the
directory, an error occurs.

An error also occurs if the final directory does not exist.
If any error occurs, this method throws an Exception.

Examples

File._DeleteDirectory("'/ROMDISK/temp/new_directory') " Delete "new_directory"
" if empty

See Also

File and Serial 1/0 | File.CreateDirectory | File.DeleteFile

72

File and Serial I/O Classes

File.DeleteFile Method

Deletes a single file.
File.DeleteFile (path)

Prerequisites

The file cannot be open for read or write.

Parameters
path
A String that contains the path to the file to delete, beginning with the
device name and ending with the file name.
Remarks

This method deletes a single file in the location specified by the path parameter.

An error occurs if the file does not exist.
If any error occurs, this method throws an Exception.

Examples

File.DeleteFile("/ROMDISK/myfile.txt'™) " Delete "myfile.txt"
See Also

File and Serial 1/0 | File.DeleteDirectory

73

File and Serial I/O Classes

File.GetDirectories Method

Reads a directory, gets the names of all sub-directories, and returns them in an array of
Strings.

<string_array> = File.GetDirectories (path)

Prerequisites

Directories can only be read on the devices "/ROMDISK", "/flash", and "/GPL".

Parameters
path
A required String expression that contains the path to the directory that
is to be read. The path may not specify wild-card file name matching.
Remarks

This method permits a GPL program to retrieve the names of sub-directories within a
directory. If the specified directory path does not exist, this method throws an exception.

One sub-directory name is returned per array element. The length of the returned String
array indicates how many sub-directories were discovered. The sub-directory names are
relative to the specified path.

If sub-directories are being actively created or deleted when this method is invoked,
some existing sub-directories may be missed or a blank String element may be returned.

Examples

Dim files() As String
Dim ii As Integer
files = File.GetDirectories(path)
Console.Writeline(CStr(files.Length) & " directories seen™)
For ii = 1 To files.Length

Console._Writeline("File " & CStr(ii) & ": " & Files(ii-1))
Next ii

See Also

74

File and Serial 1/0 | File.GetFiles

File and Serial I/O Classes

File.GetFiles Method

Reads a directory, gets the names of all non-directory files, and returns them in an array
of Strings.

<string_array> = File.GetFiles (path)

Prerequisites

Directories can only be read on the devices "/ROMDISK", "/flash", and "/GPL".

Parameters
path
A required String expression that contains the path to the directory that
is to be read. The path may not specify wild-card file name matching.
Remarks

This method permits a GPL program to retrieve the names of files within a directory. If the
specified directory path does not exist, this method throws an exception.

One file name is returned per array element. The length of the returned String array
indicates how many files were detected. The file names are relative to the specified path.

If files are being actively created or deleted when this method is invoked, some existing
files may be missed or a blank String element may be returned.

Examples

Dim files() As String
Dim ii As Integer
files = File.GetFiles(path)
Console.Writeline(CStr(files.Length) & " files seen™)
For ii = 1 To files.Length

Console.Writeline("File " & CStr(ii) & ": " & Ffiles(ii-1))
Next ii

See Also

File and Serial 1/0 | File.GetDirectories

75

File and Serial I/O Classes

New StreamReader Constructor

Constructor for creating a StreamReader Object. Also opens a file or device for reading.
New StreamReader (path)

Prerequisites

None
Parameters
path
A String that contains the path for the file or device to open. Local serial
ports are devices named "/dev/icom1", "/dev/icom2", etc. Remote serial
ports are named "/dev/icomrxy" where "X" is the number of the remote
device and "y" is the number of the serial port on the remote
device. Temporary files may be placed on device "/ROMDISK" and
permanent files may be placed on "/flash".
Remarks

This method opens a file or device and associates it with a new StreamReader Object.
If any error occurs, this constructor throws an Exception.
Examples

Dim coml As New StreamReader(''/dev/coml™) ® Open serial port #1
Dim tfile As New StreamReader("'/ROMDISK/test.tmp') " Open temporary file
Dim pfile As New StreamReader (*'/flash/save.txt') " Open permanent file

See Also

File and Serial 1/0 | New StreamWriter

76

File and Serial I/O Classes

streamreader_object.Close Method

Closes the file or device associated with a StreamReader Object.
steamreader_object.Close

Prerequisites
None

Parameters
None

Remarks

This method closes the file or device that is associated with a StreamReader Object. If
any /O error occurs, it throws an Exception. No error occurs if the file or device is not
currently open.

Examples

streamreader_object.Close()
See Also

File and Serial 1/0 | New StreamReader

77

File and Serial I/O Classes

streamreader_object.Peek Method

Returns the next byte from an input stream without removing it from the stream.
...steamreader_object.Peek()

Prerequisites

The input stream must have been opened using a New to create the
streamreader_object.

Parameters
None
Remarks

This method returns the next byte from the input stream as an Integer, but it does not
remove the byte from the stream. The next input method call will still return this byte.

If any I/O error occurs or an end-of-file is encountered, this method returns -1.

For serial devices, this method does not block, but immediately returns -1 if no bytes are
available to read.

If no device or file is open, this method throws an Exception.

Examples

Dim coml As New StreamReader(*'/dev/coml'™)
Dim c As Integer
c = coml.Peek(Q)

See Also

File and Serial 1/0 | streamreader object.Read

78

File and Serial I/O Classes

streamreader_object.Read Method

Returns the next byte from an input stream and removes it from the stream.
...steamreader_object.Read()

Prerequisites

The input stream must have been opened using a New to create the
streamreader_object.

Parameters
None
Remarks

This method returns the next byte from the input stream as an integer. The byte is
removed from the stream so that subsequent calls do not return it.

If any I/O error occurs or an end-of-file is encountered, this method returns -1.
For serial devices, this method blocks if no bytes are available to read.

Be careful when using this method to read data from a serial port since it blocks until a
byte is available. If for some reason the byte is lost due to an error, this method will
continue blocking and hang your procedure.

If no device or file is open, this method throws an Exception.

Examples

Dim coml As New StreamReader(*'/dev/coml'™)
Dim c As Integer
c = coml.Read()

See Also

File and Serial 1/0 | streamreader object.Peek | streamreader object.ReadLine

79

File and Serial I/O Classes

streamreader_object.ReadLine Method

Reads a line from the input stream terminated by LF, CR, or CR-LF.
...steamreader_object.ReadLine()

Prerequisites

The input stream must have been opened using a New to create the
streamreader_object.

Parameters
None
Remarks

This method returns a String containing the next bytes in the input stream up to the next
LF character (decimal value 10, GPL_LF) or CR character (decimal 13, GPL_CR). It
blocks until the data followed by these line terminators is received or the end-of-file is
seen.

Any LF, CR, or CR-LF pair is removed from the end of the string.

Note that the StreamWriter NewLine property does not have any effect on how
ReadLine interprets the end of line.

Be careful when using this method to read data from a serial port since it blocks until a
line terminator is seen. If for some reason the line terminator is lost or corrupted due to
an error, this method will continue blocking and hang your procedure.

If some other I/O error occurs, this method throws an Exception.

Examples

Dim file As New StreamReader(*'/flash/data.txt")
Dim line As String
line = file.ReadLine()

See Also

File and Serial 1/0O | streamreader_object.Read

80

File and Serial I/O Classes

New StreamWriter Constructor

Constructor for creating a StreamWriter Object. Also opens a file or device for writing.

New StreamWriter (path)
Or
New StreamWriter (path, append)

Prerequisites

None
Parameters
path
A String that contains the path for the file or device to open. Serial ports
are devices named "/dev/com1”, "/devicom?2", etc. Remote serial ports
are named "/dev/comrxy" where "x" is the number of the remote device
and "y" is the number of the serial port on the remote device. Temporary
files may be placed on device "/ROMDISK" and permanent files may be
placed on "/flash".
append
A Boolean value that determines whether or not new data should be
appended to the end of an existing file. If append is False, a new file is
always created, overwriting any existing file with the same name.
Remarks

This method opens a file or device and associates it with a new StreamWriter Object.

By default, AutoFlush is enabled for serial ports and the /NVRAM device but not for files
on other devices.

If any error occurs, this method throws an Exception.
Examples

Dim coml As New StreamWriter(''/dev/coml™) ® Open serial port #1
Dim tfile As New StreamWriter(*"/ROMDISK/test.tmp"™) " Open temporary file
Dim pfile As New StreamWriter("'/flash/save.txt") " Open permanent file

See Also

81

File and Serial I/O Classes

File and Serial I/O | New StreamReader | streamwriter_object.AutoFlush

82

File and Serial I/O Classes

streamwriter_object.AutoFlush Property

Sets or gets the AutoFlush property that controls whether or not output is buffered.

steamwriter_object.AutoFlush = <boolean_value>
Or
...Steamwriter_object.AutoFlush

Prerequisites
None

Parameters
None

Remarks

Setting this property to True causes output requests to immediately write data to the file
or device. Setting it to False buffers the output and lets the system decide when to write
it. Buffered output is always immediately written when a Flush or Close method is
executed.

Setting AutoFlush to True for files may significantly slow down any write operations.

By default, AutoFlush is set to True for serial ports and the /NVRAM device and set to
False for files on other devices.

Examples

Dim pfile As New StreamWriter("'/flash/save.txt") " Open permanent file
pfile_AutoFlush = True

See Also

File and Serial 1/0 | streamwriter object.Flush

83

File and Serial I/O Classes

streamwriter_object.Close Method

Closes the file or device associated with a StreamWriter Object.
steamwriter_object.Close

Prerequisites
None

Parameters
None

Remarks

This method closes the file or device that is associated with a StreamWriter Object. Any
pending buffered output is written before the close completes.

If buffered output is being written, this method blocks until the output is complete.

If any I/O error occurs, this method throws an Exception. No error occurs if the file or
device is not currently open.

Examples

streamwriter_object.Close()
See Also

File and Serial 1/0O | New StreamWriter

84

File and Serial I/O Classes

streamwriter_object.Flush Method

Immediately writes any buffered data for a StreamWriter Object.

steamwriter_object.Flush

Prerequisites

The output stream must have been opened using a New to create the
streamwriter_object.

Parameters

None

Remarks

This method immediately writes any buffered data to the output device or file. When
output is performed, this method blocks until it is complete.

Calling the Flush method is redundant if the AutoFlush property is set to True.

Explicit flush operations are more efficient than setting AutoFlush to True if you are
performing a number of small write requests. If AutoFlush is True, each small write
request causes output to occur. If AutoFlush is False, the small write requests can be
buffered and the entire buffer is written by a single Flush.

A Flush equivalent is always performed by the Close method.

If any I/O error occurs, this method throws an Exception.

Examples

Dim
com
com

com

See Also

com As New StreamWriter("'/dev/coml'™)

.AutoFlush = False " Disable automatic flush
Write("Write™)

com.
com.
-Flush

Write(" a short ™)
WriteLine(*'message’)

File and Serial 1/O | streamwriter object.AutoFlush

85

File and Serial I/O Classes

streamwriter_object.NewLine Property

Sets or gets the NewLine property that controls how lines are terminated by the
WriteLine method.

steamwriter_object.NewLine = <newline_string>
Or
...Steamwriter_object.NewLIne

Prerequisites
None

Parameters
None

Remarks

This property is a string of 0, 1 or 2 bytes that is appended to the end of any output
performed by the streamwriter_object.WriteLine method.

By default the NewLine value is a 2-byte string containing an ASCII CR character
(decimal 13, GPL_CR) followed by an LF character (decimal value 10, GPL_LF).

Typical settings for this property are CR, LF, or CR-LF. If set to an empty string, no
terminator is added to the end of lines.

Examples

Dim pfile As New StreamWriter("'/dev/coml'™) " Open serial port 1

pfile_NewLine = Chr(GPL_LF) " Set terminator to LF (10)
pfile_NewLine = Chr(GPL_CR) " Set terminator to CR (13)
See Also

File and Serial 1/0 | streamwriter object.WriteLine

86

File and Serial I/O Classes

streamwriter_object.Write Method

Writes a number or a String to an output device or file.

steamwriter_object.Write(number)
Or
steamwriter_object.Write(string_value)

Prerequisites

The output stream must have been opened using a New to create the
streamwriter_object.

Parameters
number

A numeric value that is converted to a String and written.

string_value

A String expression this is written. Each byte of the String may be an
arbitrary 8-bit value.

Remarks

This method writes String data to an output device or file. If a number is passed as the
argument, it is first converted to an ASCII String value and then output.

Buffering of data is determined by the setting of the AutoFlush property. When output is
actually performed, this method blocks until it is complete.

If any I/O error occurs, this method throws an Exception.
Examples

Dim tfile As New StreamWriter("'/ROMDISK/test._tmp')

tfile . Write("Test ™) " Writes "Test "
tfile.Write(3.14) " Writes "3.14" on the same line as "Test "
See Also

File and Serial 1/0O | streamwriter _object.WriteLine

87

File and Serial I/O Classes

streamwriter_object.WriteLine Method

Writes a number or a String to an output device or file, followed by the NewLine line
terminator.

steamwriter_object.WriteLine(number)
Or
steamwriter_object.WriteLine(string_value)

Prerequisites

The output stream must have been opened using a New to create the
streamwriter_object.

Parameters
number
A numeric value that is converted to a String and written.
string_value

A String expression this is written. Each byte of the String may be an
arbitrary 8-bit value.

Remarks

This method is the same as the Write method with the addition that it appends the value

of the NewLine property to any output requests.

This method writes String data to an output device or file. If a number is passed as the
argument, it is first converted to an ASCII String value and then output.

Buffering of data is determined by the setting of the AutoFlush property. When output is

actually performed, this method blocks until it is complete.
If any I/O error occurs, this method throws an Exception.

Examples

Dim tfile As New StreamWriter("'/ROMDISK/test._tmp'™)

tfile WriteLine("'Test") " Writes "Test"
tfile_WriteLine(3.14) " Writes "3.14" on the line following "Test"
See Also

88

File and Serial I/O Classes

File and Serial /O | streamwriter_object.NewLine | streamwriter_object.Write

89

Function Summary

Functions

The following sections present detailed information on the standard functions that are
supported by GPL. These functions are not grouped into a specific Class and are
provided in this manner to be compatible with other Basic Language systems.

As is standard in GPL, conversions between different arithmetic types, e.g. Boolean,
Integer, Single, Double, are automatically performed as required. So, it is not necessary
to have different variations on these functions to deal with the different possible mixes of
input parameter data types. Also, these functions generally produce results that are
formatted as Double’s. These results will automatically be converted to smaller data
types as necessary, e.g. Double -> Integer, and will not generate an error so long as

numeric overflow does not occur.

The table below briefly summarizes the system functions that are described in greater

detail in the following sections.

Function

Description

CBool (expression)

Converts any numeric type or String to Boolean

CByte (expression)

Converts any numeric type or String to Byte.

CDbl (expression)

Converts any numeric type or String to Double.

ClInt (expression)

Converts any numeric type or String to Integer.

CShort (expression)

Converts any numeric type or String to Short.

CSng (expression)

Converts any numeric type or String to Single.

CStr (expression)

Converts any numeric type to String.

Fix (number)

Truncates towards zero any numeric type returning
only the integer portion of the number.

Hex (expression)

Converts an Integer value to String in Hexadecimal
format.

Int (number)

Truncates towards negative infinity any numeric type
returning only the integer portion of the number.

Rnd (seed)

Returns a pseudo random number.

90

CBool Function

Converts any numeric type or String to a Boolean value.
...CBool (expression)

Prerequisites

None
Parameters
expression
A required numeric or string expression. The numeric expression can
yield any type of result, i.e. Boolean, Byte, Double, Integer, Short or
Single.
Remarks

The conversion operators are a group of functions that convert an expression that
evaluates to any numeric or string type into a specified data type. The conversion tests
that the converted value falls within the proper range of values for the returned data
type. If the converted value is out of range, and error is generated.

As opposed to the Int and Fix functions, the conversion functions convert real numbers
to integers by rounding rather than truncation.

The following table summarizes all of the conversion functions.

Function Returned Data Range of Valid Expression Values
Type
CBool Boolean Any 0 or non-zero value
CByte Byte 0 to 255
CDbl Double -1.79769313486231E+308 to

-4.94065645841247E-324 for negative values;
4.94065645841247E-324 to
1.79769313486231E+308 for positive values.

Int Integer -2,147,483,648 to 2,147,483,647
CShort Short -32768 to 32767
CSng Single -3.402823E+38 to -1.401298E-45 for negative

values; 1.401298E-45 to 3.402823E+38 for
positive values.

Functions

91

Functions

0
.

String

Any valid Double value

T
v
x

String

Any valid Integer value

Examples

Dim s_val As Single
CInt(3.14159) *~ Sets s_val equal to 3
CByte(300) " WILL GENERATE AN ERROR

s_val
s_val

See Also

Functions

Fix Function | Int Function

92

CByte Function

Converts any numeric type or String to a Byte value.
...CByte (. expression)

Prerequisites

None
Parameters
expression
A required numeric or string expression. The numeric expression can
yield any type of result, i.e. Boolean, Byte, Double, Integer, Short or
Single.
Remarks

The conversion operators are a group of functions that convert an expression that
evaluates to any numeric or string type into a specified data type. The conversion tests
that the converted value falls within the proper range of values for the returned data
type. If the converted value is out of range, and error is generated.

As opposed to the Int and Fix functions, the conversion functions convert real numbers
to integers by rounding rather than truncation.

The following table summarizes all of the conversion functions.

Function Returned Data Range of Valid Expression Values
Type
CBool Boolean Any 0 or non-zero value
CByte Byte 0 to 255
CDbl Double -1.79769313486231E+308 to

-4.94065645841247E-324 for negative values;
4.94065645841247E-324 to
1.79769313486231E+308 for positive values.

Int Integer -2,147,483,648 to 2,147,483,647
CShort Short -32768 to 32767
CSng Single -3.402823E+38 to -1.401298E-45 for negative

values; 1.401298E-45 to 3.402823E+38 for
positive values.

Functions

93

Functions

0
.

String

Any valid Double value

T
v
x

String

Any valid Integer value

Examples

Dim s_val As Single
CInt(3.14159) *~ Sets s_val equal to 3
CByte(300) " WILL GENERATE AN ERROR

s_val
s_val

See Also

Functions

Fix Function | Int Function

94

CDbl Function

Converts any numeric type or String to a Double value.
...CDbl (' expression)

Prerequisites

None
Parameters
expression
A required numeric or string expression. The numeric expression can
yield any type of result, i.e. Boolean, Byte, Double, Integer, Short or
Single.
Remarks

The conversion operators are a group of functions that convert an expression that
evaluates to any numeric or string type into a specified data type. The conversion tests
that the converted value falls within the proper range of values for the returned data
type. If the converted value is out of range, and error is generated.

As opposed to the Int and Fix functions, the conversion functions convert real numbers
to integers by rounding rather than truncation.

The following table summarizes all of the conversion functions.

Function Returned Data Range of Valid Expression Values
Type
CBool Boolean Any 0 or non-zero value
CByte Byte 0 to 255
CDbl Double -1.79769313486231E+308 to

-4.94065645841247E-324 for negative values;
4.94065645841247E-324 to
1.79769313486231E+308 for positive values.

Int Integer -2,147,483,648 to 2,147,483,647
CShort Short -32768 to 32767
CSng Single -3.402823E+38 to -1.401298E-45 for negative

values; 1.401298E-45 to 3.402823E+38 for
positive values.

Functions

95

Functions

0
.

String

Any valid Double value

T
v
x

String

Any valid Integer value

Examples

Dim s_val As Single
CInt(3.14159) *~ Sets s_val equal to 3
CByte(300) " WILL GENERATE AN ERROR

s_val
s_val

See Also

Functions

Fix Function | Int Function

96

Cint Function

Converts any numeric type or String to an Integer value.
...CInt (' expression)

Prerequisites

None
Parameters
expression
A required numeric or string expression. The numeric expression can
yield any type of result, i.e. Boolean, Byte, Double, Integer, Short or
Single.
Remarks

The conversion operators are a group of functions that convert an expression that
evaluates to any numeric or string type into a specified data type. The conversion tests
that the converted value falls within the proper range of values for the returned data
type. If the converted value is out of range, and error is generated.

As opposed to the Int and Fix functions, the conversion functions convert real numbers
to integers by rounding rather than truncation.

The following table summarizes all of the conversion functions.

Function Returned Data Range of Valid Expression Values
Type
CBool Boolean Any 0 or non-zero value
CByte Byte 0 to 255
CDbl Double -1.79769313486231E+308 to

-4.94065645841247E-324 for negative values;
4.94065645841247E-324 to
1.79769313486231E+308 for positive values.

Int Integer -2,147,483,648 to 2,147,483,647
CShort Short -32768 to 32767
CSng Single -3.402823E+38 to -1.401298E-45 for negative

values; 1.401298E-45 to 3.402823E+38 for
positive values.

Functions

97

Functions

0
.

String

Any valid Double value

T
v
x

String

Any valid Integer value

Examples

Dim s_val As Single
CInt(3.14159) *~ Sets s_val equal to 3
CByte(300) " WILL GENERATE AN ERROR

s_val
s_val

See Also

Functions

Fix Function | Int Function

98

CShort Function

Converts any numeric type or String to a Short value.
...CShort (expression)

Prerequisites

None
Parameters
expression
A required numeric or string expression. The numeric expression can
yield any type of result, i.e. Boolean, Byte, Double, Integer, Short or
Single.
Remarks

The conversion operators are a group of functions that convert an expression that
evaluates to any numeric or string type into a specified data type. The conversion tests
that the converted value falls within the proper range of values for the returned data
type. If the converted value is out of range, and error is generated.

As opposed to the Int and Fix functions, the conversion functions convert real numbers
to integers by rounding rather than truncation.

The following table summarizes all of the conversion functions.

Function Returned Data Range of Valid Expression Values
Type
CBool Boolean Any 0 or non-zero value
CByte Byte 0 to 255
CDbl Double -1.79769313486231E+308 to

-4.94065645841247E-324 for negative values;
4.94065645841247E-324 to
1.79769313486231E+308 for positive values.

Int Integer -2,147,483,648 to 2,147,483,647
CShort Short -32768 to 32767
CSng Single -3.402823E+38 to -1.401298E-45 for negative

values; 1.401298E-45 to 3.402823E+38 for
positive values.

Functions

99

Functions

0
.

String

Any valid Double value

T
v
x

String

Any valid Integer value

Examples

Dim s_val As Single
CInt(3.14159) *~ Sets s_val equal to 3
CByte(300) " WILL GENERATE AN ERROR

s_val =
s_val

See Also

Functions

Fix Function | Int Function

100

CSng Function

Converts any numeric type or String to a Single value.
...CSng (expression)

Prerequisites

None
Parameters
expression
A required numeric or string expression. The numeric expression can
yield any type of result, i.e. Boolean, Byte, Double, Integer, Short or
Single.
Remarks

The conversion operators are a group of functions that convert an expression that
evaluates to any numeric or string type into a specified data type. The conversion tests
that the converted value falls within the proper range of values for the returned data
type. If the converted value is out of range, and error is generated.

As opposed to the Int and Fix functions, the conversion functions convert real numbers
to integers by rounding rather than truncation.

The following table summarizes all of the conversion functions.

Function Returned Data Range of Valid Expression Values
Type
CBool Boolean Any 0 or non-zero value
CByte Byte 0 to 255
CDbl Double -1.79769313486231E+308 to

-4.94065645841247E-324 for negative values;
4.94065645841247E-324 to
1.79769313486231E+308 for positive values.

Int Integer -2,147,483,648 to 2,147,483,647
CShort Short -32768 to 32767
CSng Single -3.402823E+38 to -1.401298E-45 for negative

values; 1.401298E-45 to 3.402823E+38 for
positive values.

Functions

101

Functions

0
.

String

Any valid Double value

T
v
x

String

Any valid Integer value

Examples

Dim s_val As Single
CInt(3.14159) *~ Sets s_val equal to 3
CByte(300) " WILL GENERATE AN ERROR

s_val =
s_val

See Also

Functions

Fix Function | Int Function

102

CStr Function

Converts any numeric type to a String value.
...CStr (. expression)

Prerequisites

None
Parameters
expression
A required numeric expression. The numeric expression can yield any
type of result, i.e. Boolean, Byte, Double, Integer, Short or Single.
Remarks

The conversion operators are a group of functions that convert an expression that
evaluates to any numeric or string type into a specified data type. The conversion tests
that the converted value falls within the proper range of values for the returned data
type. If the converted value is out of range, and error is generated.

As opposed to the Int and Fix functions, the conversion functions convert real numbers
to integers by rounding rather than truncation.

The following table summarizes all of the conversion functions.

Function Returned Data Range of Valid Expression Values
Type
CBool Boolean Any 0 or non-zero value
CByte Byte 0 to 255
CDbl Double -1.79769313486231E+308 to

-4.94065645841247E-324 for negative values;
4.94065645841247E-324 to
1.79769313486231E+308 for positive values.

Int Integer -2,147,483,648 to 2,147,483,647
CsShort Short -32768 to 32767
CSng Single -3.402823E+38 to -1.401298E-45 for negative

values; 1.401298E-45 to 3.402823E+38 for
positive values.

CStr String Any valid Double value

Functions

103

Functions

Hex String Any valid Integer value

Examples

Dim stg As String
stg = CStr(3.14159) " Sets stg equal to "3.14159"

See Also

Functions | Fix Function | Format Function | Int Function

104

Functions

Fix Function

Returns the integer portion of any number by truncating towards zero.

...Fix (number)

Prerequisites

None
Parameters
number
A required numeric expression. The numeric expression can yield any
type of result, i.e. Boolean, Byte, Double, Integer, Short or Single.
Remarks

The Int and Fix functions return the integer portion of any humber by truncating the
fraction part of the value. For positive numbers, these two functions are

identical. However, for negative numbers, the Int function returns the first negative
number less than or equal to the input expression value. Alternately, the Fix function
returns the first negative number that is greater than or equal to the input expression
value. For example:

Dim s_val As Single

s_val = Int(-1.2) " Sets s_val equal to -2
s_val = Fix(-1.2) " Sets s_val equal to -1
s_val = Int(-1.9) " Sets s_val equal to -2
s_val = Fix(-1.9) " Sets s_val equal to -1

Unlike the conversion routines (e.g. Cint, CShort), these functions truncate their values
rather than round them. For example:

Dim s_val As Single

s_val = Int(1.2) " Sets s val equal to 1
s_val = CInt(1.2) " Sets s_val equal to 1
s_val = Int(1.9) " Sets s_val equal to 1
s_val = CInt(1.9) " Sets s_val equal to 2

In addition, the conversion routines test the converted values to ensure that the returned
value is within the range of a specific data type. The Int and Fix routines simply
eliminate the fraction portion of any number and perform no range testing.

Examples

105

Functions

Dim s_val As Single

s val = Int(3.14159) " Sets s val equal to 3
s_val = Int(3.99999) ~ Sets s _val equal to 3

See Also

Functions | Int Function

106

Functions

Hex Function

Converts an Integer value to a String value in Hexadecimal format.
...Hex (expression)

Prerequisites

None
Parameters
expression
A required numeric expression. The numeric expression can yield any
type of result, i.e. Boolean, Byte, Double, Integer, Short or Single,
however, the value is converted to Integer prior to conversion to a String
value.
Remarks

The conversion operators are a group of functions that convert an expression that
evaluates to any numeric or string type into a specified data type. The conversion tests
that the converted value falls within the proper range of values for the returned data
type. If the converted value is out of range, and error is generated.

As opposed to the Int and Fix functions, the conversion functions convert real numbers
to integers by rounding rather than truncation.

The following table summarizes all of the conversion functions.

Function Returned Data Range of Valid Expression Values
Type
CBool Boolean Any 0 or non-zero value
CByte Byte 0 to 255
CDbl Double -1.79769313486231E+308 to

-4.94065645841247E-324 for negative values;
4.94065645841247E-324 to
1.79769313486231E+308 for positive values.

Int Integer -2,147,483,648 to 2,147,483,647
CShort Short -32768 to 32767
CSng Single -3.402823E+38 to -1.401298E-45 for negative

values; 1.401298E-45 to 3.402823E+38 for
positive values.

107

Functions

String Any valid Double value

0
.

String Any valid Integer value

T
v
x

Examples

Dim stg As String

Dim ii As Integer

il = CInt(""&H1234") " Sets ii equal to 4660
stg = Hex(ii) " Sets stg equal to ""1234"

See Also

Functions | Fix Function | Format Function | Int Function

108

Functions

Int Function

Returns the integer portion of any number by truncating towards negative infinity.

...Int (number)

Prerequisites

None
Parameters
number
A required numeric expression. The numeric expression can yield any
type of result, i.e. Boolean, Byte, Double, Integer, Short or Single.
Remarks

The Int and Fix functions return the integer portion of any humber by truncating the
fraction part of the value. For positive numbers, these two functions are

identical. However, for negative numbers, the Int function returns the first negative
number less than or equal to the input expression value. Alternately, the Fix function
returns the first negative number that is greater than or equal to the input expression
value. For example:

Dim s_val As Single

s_val = Int(-1.2) " Sets s_val equal to -2
s_val = Fix(-1.2) " Sets s_val equal to -1
s_val = Int(-1.9) " Sets s_val equal to -2
s_val = Fix(-1.9) " Sets s_val equal to -1

Unlike the conversion routines (e.g. Cint, CShort), these functions truncate their values
rather than round them. For example:

Dim s_val As Single

s_val = Int(1.2) " Sets s val equal to 1
s_val = CInt(1.2) " Sets s_val equal to 1
s_val = Int(1.9) " Sets s_val equal to 1
s_val = CInt(1.9) " Sets s_val equal to 2

In addition, the conversion routines test the converted values to ensure that the returned
value is within the range of a specific data type. The Int and Fix routines simply
eliminate the fraction portion of any number and perform no range testing.

Examples

Dim s_val As Single
s_val = Int(3.14159) ~ Sets s_val equal to 3

109

Functions

s_val = Int(3.99999) ~ Sets s_val equal to 3
See Also

Functions | Fix Function

110

Rnd Function

Returns a pseudo random number.

...Rnd (seed)

Prerequisites
None
Parameters

seed

An optional expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

Remarks

Returns a pseudo random number whose value is greater than or equal to 0 and less

than 1.0.

The returned value is only pseudo random because the returned numbers are part of an
extremely long sequence of values that only repeat after 2232 numbers are generated.
Each time that the controller is restarted, the starting point or seed in the sequence is
determined by the system clock calendar. So, the sequence of values produced by this

function appears quite random for normal testing purposes.

If it is desired to force the sequence of numbers to restart at a fixed value, thereby
allowing a test to be exactly repeated, the optional seed parameter can be used as

follows:
seed value Effect on function
<0 The specified seed value is taken as the starting point for the
pseudo random sequence and the sequence will be continued
from this value. The number returned by this execution of the
Rnd will always be the same.
=0 The last value returned by the Rnd function will be returned
again.
>0 The next number in the pseudo random sequence will be
returned.
Not specified [Same as specifying a seed value >0.
Examples

Functions

111

Functions

Dim r_val As Single

r_val = RndQ) " Sets r_val to some random value
r_val = Rnd(-1) " Forces seed to -1, will return same number
" each time.
r_val = RndQ) " Returns next value after seed
r_val = Rnd(0) " Returns same value as last line above
See Also
Functions

112

Latch Class

Latch Class Summary

The following pages provide detailed information on the properties and methods of the
Latch Class. This class, and its Latch Object instances, provide a means for GPL
procedures to receive the results of latch events generated by digital input signals
configured as latch inputs. These results allow a robot or belt position to be captured with
high accuracy when a digital input value changes.

The Latch Class defines Latch Objects that contain the time when the latch occurred
and the robot axis positions at that time. This class also includes methods and properties
for accessing the queue of latch results, and for accessing the results themselves.

When a latch occurs, as specified by the Latch Input configuration, a Latch Object is
created and placed in a queue. Each robot has an independent queue, kept in order of
time, with the oldest objects first. All the axes of a robot are latched simultaneously, so
the entire position and orientation of the robot is available.

Belts are a special case of robots and are normally configured as "encoder only" robots.
Multiple belts or robots, or any combination of the two, may be latched simultaneously by
a single latch input or independently by separate latch inputs. Each belt or robot may be
latched by up to 12 different latch inputs.

The Latch Class allows a latch queue to be associated with a system thread event (see
Thread Class, method WaitEvent) so that an event is sent to a thread whenever a new
latch is placed in the queue. By waiting for events, a GPL thread may efficiently wait for
latches to occur.

For a general discussion of Latches, please see the Controller Software > Introduction
To The Software > Communications > Digital Inputs and Outputs > Latch Inputs
section of the Precise Documentation Library.

The table below briefly summarizes the methods and properties that are described in
greater detail in the following sections.

Member Type Description
Returns the latched value of the specified
latch_object.Angle Property axis angle. Avoids creating a Location
object.
Shared Returns the number of latch results
Latch.Count .
e Property pending for a robot or conveyor belt.

Returns the error code from a latch object.

latch_object.ErrorCode |Property 0 means no error

113

Latch Class

114

Shared Flushes all latch results pending for a robot
Latch.Flush
E— Method or conveyor belt.
Returns a Location object containing the
latch_object.Location Method latched position, as a Cartesian value or a
set of angles.
Removes the next latch result from the
Shared queue for a robot or belt and returns it as a
Latch.Result Latch object. Returns Nothing if the queue
Method ' L9
is empty. Throws an exception if a result
was lost due to an overflow.
. . Returns the number of the digital input
latch_object.Signal Property signal that generated the latch.
Associates a thread event with a robot or
Latch ThreadEvent Shared belt. The thr(_ead event gets set if the latch
Property queue contains latch results or when new
latch results are added.
Returns the timestamp when the latch
latch_object.Timestamp |Property occurred as a Double value, consistent with

the Controller.Timer property.

Latch Class

latch_object.Angle Property

Read-only property that returns the latched value of the specified axis angle. Avoids
creating a location object.

...latch_object.Angle(axis)
Prerequisites

Requires that the Encoder Latching or Advanced Controls or Conveyor Tracking License
be installed on the controller.

Parameters
axis
An optional numeric expression that specifies the angle whose value is
returned. If not specified, a default value of 1 is assumed.
Remarks

This property returns the specified angle from a Latch object. It is more efficient than
using latch_object.Location(1).Angle(1) since it does not require the creation of an
intermediate Location object.

Examples

Dim lat As Latch
lat = Latch.Result(l) " Get next latched value
Console.WriteLine('Latched angle 1: " & CStr(lat.Angle(1)))

See Also

Latch Class | latch object.Location| location object.Angle

115

Latch Class

Latch.Count Shared Property

Read-only shared property that returns the number of Latch objects pending in the
gueue for a robot.

...Latch.Count(robot)

Prerequisites

Requires that the Encoder Latching or Advanced Controls or Conveyor Tracking License
be installed on the controller.

Parameters
robot
An optional numeric expression that specifies the robot queue to be
accessed. If not specified, a default value of 1 is assumed.
Remarks

This property returns the number of Latch objects pending in the Latch queue for a
specified robot.

Examples

Console.WriteLine("'Pending latch results: " & CStr(Latch.Count))
See Also

Latch Class

116

Latch Class

latch_object.ErrorCode Property

Read-only property that returns the numeric error code associated with the latch object.
...latch_object.ErrorCode

Prerequisites

Requires that the Encoder Latching or Advanced Controls or Conveyor Tracking License
be installed on the controller.

Parameters
None
Remarks

This property returns the number of any error associated with a latch object. A value of 0
indicates no error. A value < 0 indicates that an error occurred during latching.

This read-only property is only meaningful if the optional no_exception parameter was set
to True when the Latch.Result method was called to return the latch object. If
no_exception was set to False, the returned object will always have a zero ErrorCode
value.

For a full listing of the defined ErrorCode values, please see the "System Error Codes"
section of the Precise Documentation Library. For specific information on the most likely
error codes, please see the documentation on Latch.Result.

Examples

Dim latl As Latch
latl = Latch.Result(1, True) " Get latch event
If latl.ErrorCode < O Then
Console.WriteLine("'Latch error: " & CStr(latl.ErrorCode))
End If

See Also

Latch Class | Latch.Result

117

Latch Class

Latch.Flush Shared Method

Removes all pending results from the Latch queue for a specified robot.
Latch.Flush(robot)

Prerequisites

Requires that the Encoder Latching or Advanced Controls or Conveyor Tracking License
be installed on the controller.

Parameters
robot
An optional numeric expression that specifies the robot queue to be
accessed. If not specified, a default value of 1 is assumed.
Remarks

This property removes all Latch result objects from the specified robot queue. It also
resets any pending overflow errors for that queue. After calling this method, the
Latch.Count property for the queue will be 0, until new latches occur.

Examples

Latch.Flush(l)
Console.WriteLine(''Latch results: " & CStr(Latch.Count(l1)))
* Displays value of 0

See Also

Latch Class

118

Latch Class

latch_object.Location Method

Returns a Location object that contains the latched position of a robot.
...latch_object.Location(type)

Prerequisites

Requires that the Encoder Latching or Advanced Controls or Conveyor Tracking License
be installed on the controller.

Parameters
type

A required numeric expression that specifies the type of Location object
to be returned. A value of 0 indicates the Location contains Cartesian
position and orientation information. 1 indicates the Location contains a
set of axis position values. This parameter is consistent with the
location_object. Type property.

Remarks

This property returns the latched robot position and orientation as a new Location object
of the specified type. This Location object may then be used like any other Location
object. All the axes of the robot are latched simultaneously, so the total robot position at
the time of the latch is consistent.

If a single latched angle is of interest, the latch_object.Angle property is more efficient
since it does not create a Location.

Examples

Dim lat As Latch

Dim Ipos As Location

lat = Latch.Result(l) " Get next latched value
Ipos = lat.Location(0) " Cartesian Location
Console.WriteLine(""Latched X: " & CStr(lpos.X))

See Also

Latch Class| latch _object.Angle| location object.Angle

119

Latch Class

Latch.Result Shared Method

Returns a Latch object containing the next result from a latch queue. Returns Nothing if
the queue is empty.

...Latch.Result(robot, no_exception)

Prerequisites

Requires that the Encoder Latching or Advanced Controls or Conveyor Tracking License
be installed on the controller.

Parameters

robot

An optional numeric expression that specifies the robot queue to be
accessed. If not specified, a default value of 1 is assumed.

no_exception

An optional numeric expression that determines whether or not this
method will throw an exception if a latch related error occurs. If zero or
omitted, latch related errors throw exceptions. If non-zero, no exceptions
are thrown.

Remarks

120

This method removes the next latched result from the latch queue associated with the
specified robot. A new Latch object is returned. This object contains the latch result
information.

If the latch queue is empty, this method returns a Nothing value, so the caller should test
for Nothing unless it is known that the queue is not empty.

Latch results are returned by the Latch.Result method in the order that they were
received, with the oldest results returned first.

If a latch related error is encountered, and the no_exception parameter is 0 or omitted,
this method throws an exception. If this parameter is non-zero, no exception is thrown
and a latch object is returned with its ErrorCode property set to the appropriate negative
error number. If no error occurs or if no_exception is 0 or omitted, the ErrorCode
property is always set to zero.

The following latch related errors may be generated:

Latch Class

Code Text Description

Latch events were generated faster than the GPL
program removed them from the FIFO using this method.
You can increase the FIFO size by increasing the value
of DatalD 16101, (Latch queue max).

The hardware latch circuit has detected that edges in the
latch input signal are occurring too quickly to be
processed. One or more latch edges have been lost. The

-525 Latch input overrun latch circuit cannot handle duplicate latch edges in the
same direction more often than once every 1.2
milliseconds. There may be noise on the latch input
signal.

Latch events are occurring too quickly for the Precise
Controller to service them. If a continuous stream of latch
events occurs at a rapid rate, the controller may run out
of time to process them. This error is more likely to occur
in a servo network system. Reduce the rate of latch
events or reduce the number of latch signals being used.

-203 Fifo overflowed

-526 Latch data overrun

Examples

Dim lat As Latch
lat = Latch.Result(l)
While Not lat Is Nothing
Console.WriteLine(CStr(lat.Signal) & ": "™ & _
CStr(lat.Timestamp) & ", " &
Cstr(lat.Angle(1)))
lat = Latch.Result(l)
End While

lat = Latch.Result(1l, True)
IT (Not lat Is Nothing) Then
IT (lat.ErrorCode < 0) Then
Console.WriteLine("Error " & CStr(lat.ErrorCode))
End If
End If

See Also

Latch Class | latch object.ErrorCode

121

Latch Class

latch_object.Signal Property

Returns the number of the digital input signal that generated a latch result.

...latch_object.Signal

Prerequisites

Requires that the Encoder Latching or Advanced Controls or Conveyor Tracking License
be installed on the controller.

Parameters

None

Remarks

122

Latch results are created when a digital input signal changes from low to high or high to

low, depending on the latching configuration.

This property returns the number of the digital input signal that triggered the latching. If
the signal number is positive, the input changed from low to high. If the signal number is

negative, the input changed from high to low.

The possible signal numbers are shown in the table below.

Signal Number

10001 - 10002

10001 - 10012

10033 - 10040

Type

Local hardware
latching, if available.

Local software latching.
Inputs used for
hardware latching may
not be used for
software latching.

Z10 board input
software latching.

Description

Signals are monitored by hardware for
high-accuracy latching. Position errors as
low as 4um are possible when an axis is
traveling at 1 meter/second depending
on sensors.

If hardware signal 10001 is bi-directional
(i.e. both upward and downward
transitions trigger latching), signal 10002
may not be used for latching.

Signals are monitored by software.
Position errors as low as 1mm are
possible when an axis is traveling at 1
meter/second.

Signals are monitored by software.
Position errors as low as 4mm are
possible when an axis is traveling at 1
meter/second.

Remote hardware

n10001 - latching, if available, for
n10002 Ethernet servo network

node n.

Remote software
n10001 - latching for Ethernet
n10012

servo network node n.
n10001 - Remote software
n10003 latching for Serial servo
n10001 - network node n. (GSB
n10008 or GIO).

Examples

Dim lat As Latch
lat = Latch.Result(l)

Latch Class

Signals are monitored by hardware on
remote servo boards in the Ethernet
servo network. Position errors as low as
20um are possible when an axis is
traveling at 1 meter/second.

If hardware signal n10001 is bi-
directional (i.e. both upward and
downward transitions trigger latching),
signal n10002 may not be used for
latching.

Signals are monitored by software.
Position errors as low as 1mm are
possible when an axis is traveling at 1
meter/second.

Signals are monitored by software at
16KHz. Position errors as low as 62.5um
are possible when an axis is traveling at
1 meter/second.

Console.WriteLine('Signal: " & CStr(lat.Signal))

See Also

Latch Class

123

Latch Class

Latch.ThreadEvent Shared Property

Associates a thread event with a latch result queue.

Latch.ThreadEvent(robot) = event_mask
Or
...Latch.ThreadEvent(robot)

Prerequisites

Requires that the Encoder Latching or Advanced Controls or Conveyor Tracking License
be installed on the controller.

Parameters
robot
An optional numeric expression that specifies the robot queue to be
accessed. If not specified, a default value of 1 is assumed.
Remarks

This property associates an event for the current thread with the latch result queue
specified by the robot parameter. Setting a value of zero cancels any event assignment in
effect. Only one thread may have events associated with a specific latch result queue.
The last thread to set this property gets the assignment.

The get property returns the mask for any current event assignment. A value of zero
indicates no assignment is in effect.

The event_mask is described in the dictionary page for the thread_object.SendEvent
method.

When an event mask is defined, an event is sent to the thread that set the
Latch.ThreadEvent property whenever:

1. The ThreadEvent property is set, and the latch queue is not empty.
2. A new latch result is added to the latch queue.

A thread can efficiently wait for latch results by using the Thread.WaitEvent method.

It is possible for more than one latch result to be placed in the queue when an event is
set. It is also possible for a thread event to be sent even when no items are placed in the
gueue. It should not be assumed that there is a single latch result ready just because an
event is received. Verify that a latch result is present by using the Latch.Count property
or checking if the Latch.Result returns Nothing.

124

Examples

Dim lat As Latch
Latch.ThreadEvent(l) = 1 " Send event 1 to current thread
While True
Thread.WaitEvent(1l, -1) " Wait for event 1
lat = Latch.Result(l)
While Not lat Is Nothing
Console.WriteLine(CStr(lat.Signal) & ": " & _
CStr(lat.Timestamp) & ", " & _
Cstr(lat.Angle(1)))
lat = Latch.Result(l)
End While
End While

See Also

Latch Class| thread object.SendEvent | Thread.WaitEvent

Latch Class

125

Latch Class

latch_object.Timestamp Property

Read-only property that returns the time when an encoder latch occurred.

...latch_object.Timestamp(select)

Prerequisites

Requires that the Encoder Latching or Advanced Controls or Conveyor Tracking License
be installed on the controller.

Parameters
select
An optional numeric value that selects the reference time for the value
returned. Set to 0 to return the seconds since January 1, 1988 according
to the time-of-day setting. Set to 1 to return the seconds since this
controller was booted. If omitted, the value 0 is assumed.
Remarks

126

This read-only property returns the timestamp that indicates when the latch_object's
encoder position latch was triggered. This timestamp is a Double value, consistent with
the Controller.Timer(select) property.

Timestamp(0) values are the number of seconds since January 1, 1988 and are
accurate to within 1 psec. Given the number of significant bits in a Double value, this
time value will not lose accuracy until the year 2124. If you change the time-of-day (using
the Date command, the web interface, or DatalD 121) this time value will be modified. So,
Timestamp(0) may be inaccurate if the time-of-day is changed while latch operations are
occurring and is therefore not recommended.

Timestamp(1) values are the number of seconds since the controller was booted.
Changing the time-of-day does not affect this value. This is the preferred method for
retrieving encoder latch times.

Latch results are returned by the Latch.Result method in the order that they were
received, with the oldest results returned first. The Timestamp property can be used to
determine the order of latch results received from different queues, or to compute the
elapsed time between latches. However, Timestamp(0) may be inaccurate or the order
may appear wrong if the time-of-day is changed while latch operations are occurring.

The accuracy of the Timestamp depends on the type of digital input signal that triggered
the latching. For information on the accuracy and latencies for each type of digital input
signal, please refer to the Documentation Library > Controller Software > Introduction to

Latch Class

the Software > Communications > Digital Inputs and Outputs > Latch Input > Latch
Timing.

Examples

Dim latl, lat2 As Latch

Dim difference As Double

latl = Latch.Result(l) " First latch

lat2 = Latch.Result(l) " Second latch
difference = lat2_Timestamp(l) - latl.Timestamp(l)
Console._WriteLine("Difference: " & CStr(difference))

See Also

Latch Class| Controller.Timer

127

Location Class

Location Class Summary

The following pages provide detailed information on the properties and methods of the
Location Class. This class and its Location Object instances provide the fundamental
means for representing robot and part positions and orientations within GPL. Location
Objects and Profile Objects (which define motion performance parameters) are the
standard arguments required by most Move methods for defining how to drive the robot
along a path to a destination specified by a Location.

Each Location Object contains data that defines: a Type indicator; a position and
orientation; clearance information that is used to safely approach the Location; and robot
configuration specific information that pertains to the target robot.

There are two Type’s of Location Objects: Angles and Cartesian. The Angles
Locations store robot positions as an array of axes positions. When we refer to the
“position” or “total position” of an Angles Location, we are referring to the array of axes
positions. The more general Type is called a Cartesian Location. Cartesian Locations
contain a Cartesian position and orientation that is displayed as an X, Y, Z displacement
and a set of three Euler Angles: Yaw, Pitch, and Roll. In addition to this position and
orientation, each Cartesian Location contains an optional pointer to a reference frame
object. The X, Y, Z, Yaw, Pitch, and Roll values define the Location’s “position with
respect to the reference frame” (PosWrtRef). When we refer to the “position” or “total
position” of a Cartesian Location, we are discussing the combined effect of the “position
with respect to the reference frame” and any specified reference frames.

Since flexible automation must alter a robot’s actions in order to accommodate to
variations in a material handling, assembly or other type of operation, extensive methods
are provided for mathematically manipulating the position and orientation of Locations.
The table below briefly summarized the properties and methods that are described in
greater detail in the following sections.

Member Type Description
location obi.Angle Property Sets and gets a single axis position for an
Angles Location.
location obj.Angles Method Changes all of the axes positions values

in an Angles Location.

location _obj.Clone Method Returns a copy of the location obj.
Sets and gets the bit flags that specify
special robot specific location attributes.
Returns the distance that a Location,
which is defined relative to a conveyor
reference frame, is from the operating
limits of the conveyor.

location_obj.Config Property

location obj.ConveyorLimitMethod

128

Location Class

Returns the distance between the XYZ

Location.Distance Method o .)
positions of two Cartesian Locations.
Modifies the “total position” of the
location_obj.Here Method location_obj to be equal to the current
location of a robot.
Defines the "total position" of location_ob)j
location_obj.Here3 Method based upon the XYZ coordinates of three
specified locations.
location obi.Inverse Method Returns the inverse of the “tqtal position”
of the Cartesian location obj.
Returns a Cartesian Location equivalent
location_obj.Kinesol Method to an Angles Location for a specific
kinematic model or vise versa.
Returns the result of combining the “total
location_obj.Mul Method position” of location_obj with the “total
position” of another Cartesian Location.
Corrects the value of the PosWrtRef of a
location_obj.Normalize Method Cartesian Location for any mathematical
inconsistencies in the value.

, N Sets and gets the Pitch angle of the
location_obj.Pitch Property PosWrtRef of a Cartesian Location.
location obi.Pos Property ISets _and gets the “total position” of the

ocation_obj.
location_obj.PosWrtRef Property Sets af‘d gets th_e PosWrtRef of a
Cartesian Location.
Sets and gets a pointer to the reference
location_obj.RefFrame Property frame object that the location_object is
defined relative to.

. : Sets and gets the Roll angle of the

location_obj.Roll Property PosWrtRef of a Cartesian Location.
Sets and gets a String value not used by
location_obj.Text Property GPL. Available for general use by
applications.
location _obj.Type Property Sets and gets the Type specification.
location obi.X Property Sets and gets the X pogition valug of the
R PosWrtRef of a Cartesian Location.
Changes the X, Y, Z, Yaw, Pitch, and Roll
location _obj.XYZ Method values of the PosWrtRef of a Cartesian
Location.
. . Increments the X, Y, and Z values of the
location_obj.XYZInc Method PosWrtRef of a Cartesian Location.
Returns a Cartesian Location with a
Location.XYZValue Method "total position" equal to specified X, Y, Z,
Yaw, Pitch, and Roll coordinates.
location obi.Y Property Sets and gets the Y po§ition valug of the
joeation_obLY PosWrtRef of a Cartesian Location.
location obi.Yaw Property Sets and gets the Yaw fangle of the
- PosWrtRef of a Cartesian Location.
location obi.Z Property Sets and gets the Z pos_,ition valug of the
joeation_obl£ PosWrtRef of a Cartesian Location.
Sets and gets the distance along the Z-
location_obj.ZClearance |Property axis that defines the safe approach

position to the Location.

129

Location Class

130

location obj.ZWorld

Property

Sets and gets the flag that indicates if the
approach distance is measured along the

'Tool or World Z coordinate axis.

Location Class

location_object.Angle Property

Sets and gets the position of a single robot axis, in units of millimeters or degrees, to and
from an Angles Location Object.

location_object.Angle(axis) = <new_numeric_value>
0 r
...location_object.Angle(axis)

Prerequisites

The location_object must be an Angles Location Object.

Parameters
axis
A required numeric expression that specifies the number of the axis to be
accessed. This value can range from 1 for the first axis up to a maximum
value of 12.
Remarks

An Angles Location Object stores the position of the robot as a set of axes position
values. For generality, a Location Object always contains 12 axes positions although
the trajectory generation task will only make use of one value for each axis configured for
the robot.

The Angle property allows a program to access and manipulate individual axis position
values. To set all of the axes positions at one time, the Angles method should be utilized.

If the location_object is not of the Angles type, accessing the Angle property will
generate an error.

Examples

Dim locl As New Location " Create new Location set to default values
Dim ang As Double
locl.Angles(-21.5, 23.2, 10) " Set locl to Angles type and define position

ang = locl.Angle(2) " ang will be set to 23.2
locl.Angle(2) *= 2 " Position of axis 2 will be 46.4
See Also

Location Class | location object.Angles

131

Location Class

location_object.Angles Method

Changes all of the axes positions values stored in an Angles Location Object.

location_object.Angles(axis_1, ..., axis_12)

Prerequisites

None

Parameters

axis_1,...,axis_12

Up to 12 optional numeric expressions that specifies the new position
value for each of the robot axes. If an expression is not specified, the
corresponding axis position will default to a value of 0. Each value is in
units of millimeters or degrees as appropriate for the axes.

Remarks

An Angles Location Object stores the position of the robot as a set of axes position
values. For generality, a Location Object always contains 12 axes positions although

the trajectory generation task will only make use of one value for each axis configured for
the robot.

The Angles method sets the values of all of the axes positions in the location_object.
Any unspecified positions are set to 0. To read or write individual axis positions, the
Angle property should be utilized.

As a convenience, independent of the initial Type of the location_object, at the
conclusion of this operation, the location_objectType will be set to indicate it is an Angles
Location Object.

Examples

Dim locl As New Location " Create new Location with default values
Dim ang As Double

locl.Angles(-21.5, 23.2, 10) " Set locl to Angles type and define

ang = locl.Angle(2) " ang will be set to 23.2
locl.Angle(2) *= 2 " Position of axis 2 will be 46.4
See Also

132

Location Class | location object.Angle

Location Class

location_object.Clone Method

Method that returns a copy of the location_object.
...location_object.Clone

Prerequisites
None
Parameters
None
Remarks
For objects, if a program contains a simple assignment statement:
object_1 = object_2

the result is that object_1 points to the same data as object 2. Any subsequent change of
a property in either object_1 or object_2 affects the data associated with both objects.

If you wish to make an independent copy of an object, the Clone method is the standard
means for performing this operation:

object_1 = object_2.Clone
Examples

Dim locl As New Location
Dim loc2 As Location

Create new location set to default values
Create new location with no data allocated

locl.X = 10.2 Set X position in locl.

loc2 = locl.Clone Makes a copy of locl data

loc2.Y = -27.1 Doesn®"t affect locl data
See Also

Location Class

133

Location Class

location_object.Config Property

Sets and gets an Integer bit mask that specifies how the Cartesian position of a
Location Object is to be converted to a set of axes position values.

location_object.Config = <new_Integer_value>
Or
...location_object.Config

Prerequisites

None

Parameters

None

Remarks

134

For some robots, there are multiple sets of axes positions that will position the robot’s tool
or gripper at the same position and orientation. For simple robots, this can occur if a wrist
axis can rotate more than 360 degrees. For more complex geometries, the alternate sets
of axes positions might correspond to what is termed “right” and “left” shoulder
configurations.

GPL’s optional kinematic modules include methods for automatically selecting among
different sets of positions in some instances. For example, if the final wrist axis of a robot
can rotate a total of 720 degrees, GPL can automatically select which revolution of this
axis should be selected as the destination for a motion to a Cartesian end

point. Normally, GPL will rotate the wrist to the closest position that satisfies the
Cartesian specification. However, if this would violate a wrist joint limit stop, GPL will
rotate the wrist in the opposite direction.

In other cases, GPL cannot automatically select the best set of joint angles to be

used. Inthese cases, GPL will generally try to maintain the robot in the same
configuration unless instructed otherwise. For example, if a position can be reached in
both a "right" and a"left" shouldered configurations, GPL will maintain the same shoulder
configuration unless explicitly directed to change. This is done to prevent large,
unexpected motions that can occur when switching the shoulder configuration.

To both indicate the current geometric configuration and to specify a change in
configuration, the Config property provides a series of bit flags that instruct GPL how it is
to convert Cartesian Locations into joint angles. When a Cartesian destination is
specified with one or more of these bits set, the next motion to this Location will try to put
the robot into the specified configuration. If bits are not set, GPL assumes that the robot
should be instructed to stay in its current configuration.

Location Class

While some configuration changes can be implemented during either a Cartesian or joint-
interpolated motion, other changes can only be performed during joint-interpolated
motions. For example, you cannot change from a right to a left shouldered configuration
and simultaneously move the tool tip along a Cartesian straight-line path. If a
configuration bit is specified which is not compatible with the specified motion type, the
configuration bit is ignored and no error is generated.

The bits currently defined for the Config property are described in the following table. As
a programming convenience, these bits also have GPL constants defined.

Legal
Config Bit GPL During o
Mask Constant Cartesian DESEIE
Motion
&HO1 GPL_Righty No Chapge rqbot to a right shouldered
configuration.
&HO2 GPL_Lefty No Chapge rqbot to a left shouldered
configuration.
&HO04 GPL Above No Chang_e robot to have the elbow above
— the wrist.
&HO8 GPL_Below No Chang_e robot to have the elbow below
the wrist.
&H10 GPL_Flip No Srljange robot to have the wrist pitched
&H20 |GPL_NoFlip No (Cj:g\zzge robot to have the wrist pitched
Restrict the wrist axis to be within +/- 180
&H1000 |GPL_Single Yes degrees rather than use its full range of
motion.

Since the robot configuration options are a function of the robot's geometry, please see
the documentation in the Kinematics Library for which bits apply to your robot.

Examples

Dim locl As New Location " Create new Cartesian Location
locl.Config = GPL_Righty+GPL_Single
" Set mask word to force robot to right
" shouldered and limit wrist rotation

See Also

Location Class | Robot.Dest | Robot.Where

135

Location Class

location_object.ConveyorLimit Method

Returns the distance that a Location, which is defined relative to a conveyor reference
frame, is from the operating limits of the conveyor belt.

...location_object.ConveyorLimit(mode)

Prerequisites

e location_object must be a Cartesian Location Object that is defined with respect

to a conveyor RefFrame.
e The Conveyor Tracking software license must be installed on the controller.

Parameters
mode
An optional numeric expression that defines the specific test to be
performed. If not specified, this value defaults to 0.
Remarks

This method is utilized in conveyor tracking applications to determine if a position is

currently within a conveyor belt's operating limits and, if so, by how much. It is often used

to sort the positions of multiple parts to select the part that is best to pick and to reject
parts that are already too far downstream.

The following table describes the returned value based upon the setting of the mode
argument. All distances are in units of mm.

Mode Returned Value

0 Returns 0 if the Location is within the upstream and downstream
limits, else <0 indicates distance upstream of the upstream limit or
>0 indicates distance downstream of the downstream limit.

1 Returns <0 to indicate the distance upstream of the upstream limit
and =>0 the distance downstream of the upstream limit
2 Returns <0 to indicate the distance upstream of the downstream

limit and =>0 the distance downstream of the downstream limit.

Examples

136

Dim beltl As New RefFrame
Dim locl As New Location

beltl.Type = 2 " Conveyor reference frame
beltl.ConveyorRobot = 2 " 2nd robot is conveyor
beltl.ConveyorOffset = Robot.WhereAngles(2).Angle(1)
locl.RefFrame = beltl " Zero encoder

Location Class

locl.Here " Test current robot loc

IT (locl.ConveyorLimit(0) <> 0) Then
Console.WriteLine("'Out of range™)

End If

See Also

Location Class | refframe_object.ConveyorOffset | refframe_object.ConveyorRobot

137

Location Class

Location.Distance Method

Returns the distance between the XYZ positions of two Cartesian Location Objects.

...Location.Distance(location_objectl, location_object2)

Prerequisites

location_objectl and location_object2 must both be Cartesian Location Objects.
Parameters

location_objectl

A required Cartesian Location Object or a method or property that
returns a Cartesian Location Object value.

location_object2

A required Cartesian Location Object or a method or property that
returns a Cartesian Location Object value.

Remarks

This method computes the distance between the positions of two Cartesian Location
Objects and returns the result as a Double. The result is always a positive number.

Examples

Dim a As New Location " Create Locations and allocate

Dim b As New Location

Dim dist As Double

a.Xyz(10,23,-17,0,0,90) " Define A, orientation doesn"t matter
b.XYz(21,8,12) " Define B

dist = Location.Distance(a,b) " dist set equal to 34.45287

See Also

Location Class

138

Location Class

location_object.Here Method

Sets the “total position” of a Location Object equal to the current position and orientation
of the Selected robot.

location_object.Here

Prerequisites

A robot must be currently Selected, but need not be Attached.
Parameters

None
Remarks

The Here method provides a very convenient means for defining or updating the “total
position” of a location_object by moving the robot to the desired position and then
executing this method to record the position and orientation.

This method works properly for both Cartesian and Angles Locations. If the
location_object is an Angles type, the values of the location_object’s axes positions are
set equal to the current axes positions of the Selected robot. For Cartesian types, the
“total position” is set equal to the current Cartesian position and orientation of the
Selected robot and its Config properties are updated. If the location_object does not
have an associated reference frame, the PosWrtRef is set equal to the current Cartesian
location of the robot. If the location_object has a reference frame, the PosWrtRef is set
such that the combination of the new PosWrtRef and the reference frame will be equal to
the current location of the robot.

While the Here method is similar to assigning a location_object to the value of the
Robot.Where() method, it is important to understand the differences. The statement:

location_object = Robot.Where() ' Works okay

assigns a new block of data to the location_object. While it does save the current robot
location in the location_object, the values previously set for ZClearance, ZWorld, and
RefFrame are effectively lost. On the other hand, the statement:

location_object.Here ' Even better

alters the PosWrtRef and Config values in the location_object with less overhead while
still preserving the values for ZClearance,ZWorld, and RefFrame. So, in most situations,
the Here method produces the expected results and should be employed instead of an
assignment statement with Robot.Where().

139

Location Class

Examples

Dim locl As New Location " Create new Location set to default values
locl.Here " Sets ""total position" of locl to present
" location of Selected robot.

See Also

Location Class | location_object.Here3 | location_object.Inverse | location_object.Mul |
Robot.Selected | Robot.Where | Robot.WhereAngles

140

Location Class

location_object.Here3 Method

Defines the "total position” of a Location Object based upon the XYZ coordinates of
three specified Locations.

location_object.Here3(location_0, location_x, location_y)

Prerequisites

location_0, location_x and location_y must be Cartesian Location Objects.

Parameters
location_0
A required Cartesian Location Object or a method or property that
returns a Cartesian Location Object value.
location_x
A required Cartesian Location Object or a method or property that
returns a Cartesian Location Object value.
location_y
A required Cartesian Location Object or a method or property that
returns a Cartesian Location Object value.
Remarks

This method is utilized for setting the "total position" of location_object based upon the
XYZ position coordinates of three Locations. This is convenient if you wish to define the
orientation and position of a Location or reference frame by teaching three Locations.

The total position of the location_object is computed as follows:

e The XYZ coordinates of the location_object are set equal to the XYZ coordinates
of the total position of location_0. That is, the XYZ coordinates of location_0
define the 0,0,0 position of the coordinate system defined by the new value of
location_obiject.

e The direction of the x-axis of location_object is defined to be parallel to the vector
from the XYZ coordinate of location_0 to the XYZ coordinate of location_x. That
is, if the XYZ position of location_0 is equivalent to the 0,0,0 position of the
coordinate frame defined by the new value of location_object, then the XYZ
position of location_x will be a point on the x-axis of the coordinate system
defined by the new value of location_object.

141

Location Class

e The XY plane of the new location_object value is defined by the XYZ coordinates
of location_0, location_x, and location_y. Normally, location_y is defined such
that its XYZ position will be a point on the y-axis of the coordinate system defined
by the new value of location_object.

At the completion of this method, the PosWrtRef value of the location_object will be set
such that the total position of location_object corresponds to the position and orientation
defined by three points represented by the three Location arguments. Also, as a
convenience, the Type of the location_object is always set to indicate it is a Cartesian
Location Object.

Examples

Dim locl As
Dim locO As
Dim locx As
Dim locy As

loc0.XYZ(10,
locx.XYzZ(10,

New Location
New Location
New Location
New Location
20,30)
25,30)

locy.XYZ(5,20,30)

locl.Here3(locO0, locx, locy)

See Also

142

Location Class

Define position of this Location

Define 0,0,0

Define point on X-axis
Define point on Y-axis

Will define locl to same as
locl.Xyz(10,20,30,0,0,90)

location object.Here | location _object.XYZ

Location Class

location_object.Inverse Method

Returns the inverse of the “total position” of the Cartesian location_object.
...location_object.Inverse

Prerequisites

The location_object must be a Cartesian Location Object.
Parameters

None
Remarks

This method evaluates the “total position” of the location_object and then inverts the
value. As defined in the description of GPL, the “total position” is the combination of the
location_object’'sPosWrtRef with the “total position” of any reference frame(s) associated
with the location_object.

As an example, if the “total position” of the location_object represents the position and
orientation of part B with respect to part A, then the Inverse will give the position and
orientation of A with respect to B. As another way to think about this operation, if the
location_object defines how to get from A to B then the Inverse will define how to get
from B to A.

Assuming that the location_object is a Cartesian type, the Inverse method returns a
Location Object with the following properties:

Property Returned Location Object value
Type Cartesian Location
PosWrtRef Inverse of the “total position” of the
location object
RefFrame Null
All other properties Same as location_object
Examples
Dim locl As New Location " Create new Location set to defaults

Dim loc2, loc3 As Location

Dim dy As Double

locl.Xyz(11, -23, 45, 0, 180, 42) " Define "position" of locl

loc2 = locl. Inverse

loc3 = loc2.Inverse * loc3 will have same "position'” as locl
dy = loc3.Y " dy will be equal to -23

143

Location Class

See Also

Location Class | location_object.Pos | location_object.Mul | location _object.PosWrtRef

144

Location Class

location_object.KineSol Method

Returns a Cartesian Location Object equivalent to an Angles Location Object for a
specific kinematic model or vise versa.

...location_object.KineSol(mode, location)

Prerequisites

A robot must be currently Selected, but need not be Attached.

Parameters

mode

An optional numeric expression that defines the operational mode for this
function. If this value is 1, any conversion errors (e.g. joint out-of-range,
position too far/close) are ignored. If this value is 0, these errors will
generate a program exception. If not specified, this value defaults to 0.

location

An optional locations expression that must produce a Joints type location
value. If specified, this is passed to the reverse kinematics routine that
converts a Cartesian Location value into an equivalent Joints Location
value. These values are used by the conversion routine as a starting
point for computing the joint angles. If a rotary axis can turn more than
360 degrees, the conversion routine will try to keep the final angle within
+/- 180 degrees of the passed in angle. For "extra" independent axes
such as servo grippers and linear rails, the passed in position is returned
as the axis position. This argument is not currently used by the
kinematics routines that convert Joint Locations to Cartesian Locations.

Remarks

This method converts a set of axes positions to an equivalent Cartesian position and
orientation or converts a Cartesian position and orientation to an equivalent set of axes
positions based upon the Selected robot’s geometry (kinematics). These operations are
typically called the “forward and reverse kinematic solutions” and require an optional
kinematic module.

Specifically, if the location_object is an Angles type, the KineSol method returns a
Location Object with the following properties:

Property Returned Location Object value

Location Class

Type Cartesian Location

PosWrtRef Equivalent to location _object Angles values
Config Appropriate for location_objectAngles values
RefFrame Null

All other properties Same as location_object

Alternatively, if the location_object is a Cartesian type, the KineSol method returns a
Location Object with the following properties:

Property Returned Location Object value
Type Angles Location
Angles Equivalent to location object’s“total position”
Config 0
RefFrame Null
IAll other properties Same as location_object

Examples
Dim locl As New Location
Dim loc2, loc3 As Location

Dim axis2 As Double
locl.Angles(12, 42, 17)
loc2 = locl.KineSol

loc3 loc2.KineSol
axis2 = loc3.Angle(2)
See Also

146

Location Class

location object.Inverse

Create new Location set to default values

Assume these values legal values for robot
Set loc2 to equivalent Cartesian Location
Regenerate Angles Location

axis2 should be 42 as in locl

location object.Mul | Robot.Selected

Location Class

location_object.Mul Method

Returns the combination of the position and orientation of a Cartesian location_object
with another Cartesian Location Object.

...location_object.Mul(location_object2)

Prerequisites

location_object and location_object2 must both be Cartesian Location Objects.
Parameters

location_object2

A required Cartesian Location Object or a method or property that
returns a Cartesian Location Object value.

Remarks

This method combines the “total position” of location_object and the “total position” of
location_object2. As described in the Introduction to GPL, the “total position” of a
Location Object is the combination of the Location Object’sPosWrtRef with the “total
position” of any reference frame(s) associated with the Location Object.

More specifically, the Mul method returns the result of evaluating the “total position” of
location_object2 with respect to the PosWrtRef value of the location_object. If defined,
the reference frame pointer for the location_object is copied to the returned Location and
is not included in the mathematic operation. This is done to preserve the explicit
reference frame relationship of the location_obiject.

For example, let’s consider the simple case without rotations where the location_object
has an X, Y, Z value of (10,25,-40) and location_object2 has an X, Y, Z value of (0,5,0). If
we now combined the values, location_object2’s incremental displacement of 5 mm along
the Y-axis would be interpreted with respect to location_object’s prior translations and the
combined result would be (10,30,-40). Now, we can see what happens if we change
location_object so it includes a 90-degree rotation about the Z-axis (10,25,-40,0,0,90). In
this case, when we combine the two values, location_object2’s Y-axis has been rotated
to point along location_object’s negative X-axis. So, the resulting combination would be
(5, 25,-40,0,0,90).

Assuming that location_object and location_object2 are both Cartesian Locations, the
Mul method returns a Location Object with the following properties:

Property Returned Location Object value

147

Location Class

Type Cartesian Location

PosWrtRef ‘total position” of the location_object2 evaluated with
respect to the PosWrtRef of the location_object. In terms
of matrix operations, this could be written as:

returned.PosWrtRef = [location_object.PosWrtRef]
*[location_object2_RefFrame]
*[location_object2._PosWrtRef]

RefFrame Same as location object
All other properties Same as location object

Examples

Dim a As New Location Create new Location set to default values
Dim b As New Location
Dim ¢ As Location

Dim dx, dy As Double

a.Xyz(10,25,-40,0,0,90) " Define A

b.XYz(0,5,0) " Define B

c = a-Mul(b)

dx = c.X " dx will be 5

dy = c.Y " dy will be equal to 25

See Also

Location Class | location_object.Inverse | location_object.Pos | location_object.PosWrtRef

148

Location Class

location_object.Normalize Method

Corrects the PosWrtRef value of a Cartesian Location Object for any mathematical
inconsistencies in the value.

location_object.Normalize

Prerequisites

The location_object must be a Cartesian Location Object.
Parameters

None

Remarks

After many sequential mathematics operations (e.g. Inverse, Mul) have been performed
on a Cartesian Location Object, it is possible for the homogeneous transformation that
is used to internally store the PosWrtRef value to suffer from mathematical
inconsistencies. For example, certain rows and columns of the 4x4 matrix are vectors
that must have unit values and be orthogonal to other vectors in the matrix. Given that all
of the elements of a transformation are stored as double precision floating-point numbers,
this problem is not very likely to occur.

Nonetheless, as a convenience, the Normalize method can be executed on a Cartesian
location_object and it will correct any mathematic errors that may have accumulated in
the PosWrtRef value.

Examples
Dim locl As New Location " Create new Location set to default values
locl.Xyz(10,20,30,0,180,25) ~ Set PosWrtRef value of locl
locl.Normalize " Won"t alter locl since it is already correct
See Also

Location Class | location object.Inverse | location object.Mul

149

Location Class

location_object.Pitch Property

Sets and gets the Pitch angle, in units of degrees, for the PosWrtRef value of a
Cartesian Location Object.

location_object.Pitch = <new_value>
Or
...location_object.Pitch

Prerequisites

The location_object must be a Cartesian Location Object.

Parameters

None

Remarks

Internally, the PosWrtRef value of a Cartesian Location Object is stored as a sparse 4
by 4 matrix called a “homogeneous transformation”. This matrix represents the three
positional degrees-of-freedom and the three rotational degrees-of-freedom needed to
fully specify a robot or part position and orientation in Cartesian coordinates. This internal
representation has several computational advantages. However, entering the values for
the elements of a homogeneous transformation is not very convenient. To simplify data
entry, transformation values are converted to X, Y, and Z position displacement
components and three Euler angles. The three Euler angles consist of a rotation about
the Z-axis, followed by a rotation about the new Y-axis, followed by a rotation about the
new Z-axis. This set of displacements and angles is often referred to as X, Y, Z, Yaw,
Pitch, and Roll.

The property described on this page allows read and write access to one of the six
components used to specify the PosWrtRef value of the Cartesian location_object.

Accessing the X, Y, and Z properties is an efficient operation. However, accessing the
Yaw, Pitch, and Roll properties requires some computational overhead. Therefore, if you
wish to set multiple angles, it is more efficient to utilize the XYZ method.

When a “New” Cartesian Location Object is created, all six components are initially set
to 0.

Examples

150

Dim locl As New Location " Create new Location set to default values
Dim ang As Double

locl.Xyz(10,20,30,0,180,25) " Set PosWrtRef value of locl

ang = locl.Roll " ang will be set to 25

locl.Roll += 5 " locl®s Roll angle will now be 30 deg.

Location Class

See Also

Location Class | location_object.X | location_object.Y | location _object.Z | location_object.Yaw |
location_object.Roll | location_object.XYZ

151

Location Class

location_object.Pos Property

Sets and gets the “total position” of the location_object.

location_object.Pos = <specified_location_value>
Or
...location_object.Pos

Prerequisites

None

Parameters

None

Remarks

152

The Pos operation accesses the “total position” of both Cartesian and Angles Location
Objects. For Cartesian Locations without reference frames, the “total position” is equal
to the PosWrtRef value stored as a Cartesian position and orientation in the
location_object. For Cartesian Locations with reference frames, the “total position” is
equal to the PosWrtRef value of the location_object evaluated with respect to the “total
position” of its reference frames. For Angles Locations, the “total value” is the equal to
the set of axes positions stored in the location_object.

The Pos set operation works properly on all varieties of Locations. However, the type of
the <specified_location_value> must match the type of the location_obiject, i.e. they must
both either be Cartesian or Angles.

For Cartesian Locations, the “total position” of the location_object is set equal to the
“total position” of the <specified location_value>. If the location_object does not have an
associated reference frame, the PosWrtRef value is set equal to the “total position” of the
<specified_location_value>. If the location_object has a reference frame, the PosWrtRef
value of the location_object is set such that the combination of the new PosWrtRef value
of the location_object and its reference frame will be equal to the “total position” of the
<specified_location_value>. If the location_object is an Angles type, the value of the
location_object’s axes positions are set equal to the axes positions of the
<specified_location_value>.

While the Pos method is similar to assigning a location_object to the value of another
Location Object, it is important to understand the differences. The statement:

location_object = location_object2

assigns a pointer to location_object2’s data to the location_object. Not only does this
operation supercede any reference frame you may have assigned to location_object, it

Location Class

also supercedes any other data assigned, such as its ZClearance information.
Furthermore, if you subsequently make a change to the data of either location_object or
location_object2, the data for both objects will be effected. Alternatively, you could use
the following assignment statement:

location_object = location_object2.Clone

This statement makes a copy of location_object2’s value before assigning it to
location_object. This statement does eliminate the potential problem of having two
variables inadvertently referencing the same data. However, this operation still
supercedes location_object's original reference frame specification and other data. Also,
one additional downside of this operation is that creating a copy of an object’s value does
incur a certain amount of system overhead.

On the other hand, the statement:
location_object.Pos = location_object2

alters the PosWrtRef or Angles values of location_object with low overhead and
preserves all of the other properties of the location_object.

If the goal of a statement is simply to update the existing “total position” or PosWrtRef
value of a Location without regard to the reference frame, you should normally make use
of either the Pos or PosWrtRef set properties.

Regarding the Pos get operation, this property returns a Location Object that contains
only the “total position” of the location_object with no reference frame or other data.
Please note that if the location_object is a Cartesian type with a reference frame, the
position and orientation of the PosWrtRef value and the “total position” of the reference
frame are combined and returned as the PosWrtRef value of the returned Object.

For all cases the value of the returned Object from the Pos get operation is as follows:

Property Returned Location Object value
Type Cartesian or Angles Location as appropriate
PosWrtRef or Angles "total position” of the location object
RefFrame Always NULL
ZClearance 1.0e32 to indicate not initialized
All other properties Always zeroed.
Examples
Dim locl As New Location " Create new Location set to defaults

Dim loc2 As New Location
locl.ZClearance = 12

loc2.Xyz(10,20,30,0,180,23) " Define PosWrtRef value for loc2
locl.Pos = loc2 " Use same "total position"” for locl
See Also

Location Class | location object.Inverse | location object.Mul | location _object.PosWrtRef

153

Location Class

location_object.PosWrtRef Property

Sets and gets the “position with respect to the reference frame” value of a Cartesian
Location Object while ignoring the reference frame.

location_object.PosWrtRef = <specified_location_value>
Or
...location_object.PosWrtRef

Prerequisites

The location_object must be a Cartesian Location Object.
Parameters

None

Remarks

This property accesses the “position with respect to the reference frame” of a Cartesian
Location Object. Normally, the PosWrtRef value is evaluated in combination with the
reference frame to compute the “total position” of a Location. However, this property
accesses the “position with respect to the reference frame” data ignoring any specified
reference frame data.

The PosWrtRef set operation allows a statement to assign a new value to the “position
with respect to the reference frame” of the location_object without affecting or considering
the value of any reference frame or any other data of the location_object. The new value
is set equal to the “total position” of the <specified_location_value> on the right hand side
of the equal sign.

The PosWrtRef get operation returns a Cartesian Location Object that contains only the
“position with respect to the reference frame” of the location_object with no reference
frame or other data. In particular, the value of the returned Object is as follows:

Property Returned Location Object value
Type Cartesian Location
PosWrtRef PosWrtRef of the location object
RefFrame Always NULL
ZClearance 1.0e32 to indicate not initialized
All other properties Always zeroed.
Examples
Dim locl As New Location " Create new Location set to default values

Dim loc2 As New Location

154

Location Class

locl.ZClearance = 12
loc2.Xyz(10,20,30,0,180,23) " Define position for loc2
locl.PosWrtRef = loc2.PosWrtRef " Use same PosWrtRef for locl

See Also

Location Class | location_object.Inverse | location_object.Mul | location_object.Pos

155

Location Class

location_object.RefFrame Property

Sets and gets a pointer to the reference frame object that the location_object is defined
relative to.

location_object.RefFrame = <reference_frame_object>
Or
... location_object.RefFrame

Prerequisites

The location_object must be a Cartesian Location.
Parameters

None
Remarks

Sets or gets the pointer to a reference frame object that the location_object’s position and
orientation is to be defined relative to. Whenever the location_object’s total position and
orientation are computed, the position and orientation of the RefFrame are automatically
taken into consideration.

When a new Location Object is defined, its pointer to a reference frame object is zeroed
by default.

Examples

Dim refl As New RefFrame Also allocates Loc
Dim locl As New Location
refl.Loc.XYZ(100,90,-80,0,0,45) " Define base frame
locl.RefFrame = refl " Define locl wrt refl
locl.Xyz(10,0,0,0,180,0) * Define locl poswrtref
Console.Writeline(locl.Pos.X) " Displays 107.07
Console.Writeline(locl.Pos.Y) " Displays 97.07

Console.Writeline(locl.Pos.Z2) Displays -80
See Also

Location Class | RefFrame Class

156

Location Class

location_object.Roll Property

Sets and gets the Roll angle, in units of degrees, for the PosWrtRef value of a Cartesian
Location Object.

location_object.Roll = <new_value>
Or
...location_object.Roll

Prerequisites

The location_object must be a Cartesian Location Object.
Parameters

None
Remarks

Internally, the PosWrtRef value of a Cartesian Location Object is stored as a sparse 4
by 4 matrix called a “homogeneous transformation”. This matrix represents the three
positional degrees-of-freedom and the three rotational degrees-of-freedom needed to
fully specify a robot or part position and orientation in Cartesian coordinates. This internal
representation has several computational advantages. However, entering the values for
the elements of a homogeneous transformation is not very convenient. To simplify data
entry, transformation values are converted to X, Y, and Z position displacement
components and three Euler angles. The three Euler angles consist of a rotation about
the Z-axis, followed by a rotation about the new Y-axis, followed by a rotation about the
new Z-axis. This set of displacements and angles is often referred to as X, Y, Z, Yaw,
Pitch, and Roll.

The property described on this page allows read and write access to one of the six
components used to specify the PosWrtRef value of the Cartesian location_object.

Accessing the X, Y, and Z properties is an efficient operation. However, accessing the
Yaw, Pitch, and Roll properties requires some computational overhead. Therefore, if you
wish to set multiple angles, it is more efficient to utilize the XYZ method.

When a “New” Cartesian Location Object is created, all six components are initially set
to 0.

Examples

Dim locl As New Location " Create new Location set to default values
Dim ang As Double

locl.Xyz(10,20,30,0,180,25) " Set PosWrtRef value of locl

ang = locl.Roll " ang will be set to 25

locl.Roll += 5 " locl®s Roll angle will now be 30 deg.

157

Location Class

See Also

Location Class | location_object.X | location_object.Y | location _object.Z | location_object.Yaw |
location_object.Pitch | location_object.XYZ

158

Location Class

location_object.Text Property

Sets and gets a String associated with a Location Object. This field is not used by GPL
and is provided for use by application programs.

location_object.Text = <string_value>
0 Irc_)cation_object.Text
Prerequisites
None
Parameters
None

Remarks

This Text property allows an application programmer to associate an arbitrary String
value with a Location object. For example, this can be used to document how the
object is employed or to store a description of the object that is subsequently displayed
when the object is accessed or taught.

Examples
Dim locl As New Location " Create new Cartesian Location
locl.Text = "This is my location"

Console.WriteLine(locl.Text)
See Also

Location Class | profile _object.Text | refframe object.Text

159

Location Class

location_object.Type Property

Sets and gets the Integer Type of a Location Object, which indicates if the Location
Object holds Cartesian or Angles data.

location_object.Type = <new_Integer_value>
Or
...location_object.Type

Prerequisites
None

Parameters
None

Remarks

The Type property indicates if the location_object contains Cartesian or Angles position
and orientation data. The possible values for this property are as follows:

Type Value Description
0 Location contains Cartesian position and orientation data.
1 Location contains a set of axes position values (“Angles”).

Many of the other Location Object properties and methods will generate an error if you
attempt to access values that are not meaningful for the current Type of the
location_obiject.

As a convenience, some methods, e.g. Angles and XYZ, automatically set the Type of a
Location Object.

When a “New” Cartesian Location is created, its Type is automatically set to Cartesian.

Examples

Dim locl As New Location " Create new Cartesian Location
Dim iType As Integer

iType =locl.Type iType will be set to O
locl.Angles(10.2,-3.2) * Will automatically set Type to 1

See Also

Location Class

160

Location Class

location_object.X Property

Sets and gets the displacement along the X-axis, in units of millimeters, for the
PosWrtRef value of a Cartesian Location Object.

location_object.X = <new_value>
Or
...location_object.X

Prerequisites

The location_object must be a Cartesian Location Object.
Parameters

None
Remarks

Internally, the PosWrtRef value of a Cartesian Location Object is stored as a sparse 4
by 4 matrix called a “homogeneous transformation”. This matrix represents the three
positional degrees-of-freedom and the three rotational degrees-of-freedom needed to
fully specify a robot or part position and orientation in Cartesian coordinates. This internal
representation has several computational advantages. However, entering the values for
the elements of a homogeneous transformation is not very convenient. To simplify data
entry, transformation values are converted to X, Y, and Z position displacement
components and three Euler angles. The three Euler angles consist of a rotation about
the Z-axis, followed by a rotation about the new Y-axis, followed by a rotation about the
new Z-axis. This set of displacements and angles is often referred to as X, Y, Z, Yaw,
Pitch, and Roll.

The property described on this page allows read and write access to one of the six
components used to specify the PosWrtRef value of the Cartesian location_object.

Accessing the X, Y, and Z properties is an efficient operation. However, accessing the
Yaw, Pitch, and Roll properties requires some computational overhead. Therefore, if you
wish to set multiple angles, it is more efficient to utilize the XYZ method.

When a “New” Cartesian Location Object is created, all six components are initially set

to 0.
Examples
Dim locl As New Location " Create new Location set to default values
Dim dx As Double
locl.Xyz(10,20,30,0,180,25) " Set PosWrtRef value of locl
dx = locl.X " dx will be set to 10
locl.X -= 2 " locl®"s X value will now be 8

161

Location Class

See Also

Location Class | location_object.Y | location_object.Z | location _object.Yaw | location_object.Pitch |
location_object.Roll | location_object.XYZ

162

Location Class

location_object.XYZ Method

Changes all six components of the PosWrtRef value of a Cartesian Location Object to
a specified set of values.

location_object.XYZ(x,y,z,yaw,pitch.roll)

Prerequisites

None

Parameters

yaw

pitch

roll

Remarks

An optional numeric expression that specifies the X-axis displacement. If
this value is not specified, a default value of 0 is assumed.

An optional numeric expression that specifies the Y-axis displacement. If
this value is not specified, a default value of 0 is assumed.

An optional numeric expression that specifies the Z-axis displacement. If
this value is not specified, a default value of 0 is assumed.

An optional numeric expression that specifies the Yaw angle rotation. If
this value is not specified, a default value of 0 is assumed.

An optional numeric expression that specifies the Pitch angle rotation. If
this value is not specified, a default value of 0 is assumed.

An optional numeric expression that specifies the Roll angle rotation. If
this value is not specified, a default value of 0 is assumed.

163

Location Class

Internally, the PosWrtRef value of a Cartesian Location Object is stored as a sparse 4
by 4 matrix called a “homogeneous transformation”. This matrix represents the 3
positional degrees-of-freedom and the 3 rotational degrees-of-freedom needed to fully
specify a robot or part position and orientation in Cartesian coordinates. This internal
representation has several computational advantages. However, entering the values for
the elements of a homogeneous transformation is not very convenient. To simplify data
entry, transformation values are entered as X, Y, and Z position displacement
components and three Euler angles. The three Euler angles consist of a rotation about
the Z-axis, followed by a rotation about the new Y-axis, followed by a rotation about the
new Z-axis. This set of displacements and angles is often referred to as X, Y, Z, Yaw,
Pitch, and Roll.

The XYZ method sets all six Cartesian components of the location_object’'s PosWrtRef
value in a single operation. Any unspecified values are set to 0. This operation is much
more efficient than using the X, Y, Z, Yaw, Pitch, and Roll properties to individually set
the component values.

As a convenience, independent of the initial Type of the location_object, at the
conclusion of this operation, the Type will be set to indicate it is a Cartesian Location
Object.

Examples

Dim locl As New Location " Create new Location set to default values
Dim dy As Double
locl.Xyz(10,20,30,0,180,25) " Set PosWrtRef value of locl

dy = locl.Y " dy will be set to 20
locl.Y += 7 " locl®"s Y value will now be 27
See Also

164

Location Class | location object.X | location object.Y | location object.Z | location object.Yaw

location object.Pitch | location object.Roll | location_object.XYZInc | Location.XYZValue

Location Class

location_object.XYZInc Method

Increments the X/Y/Z components of the PosWrtRef value of a Cartesian Location
Object by specified amounts.

location_object.XYZInc(x,y,z)

Prerequisites

The location_object must be a Cartesian Location Object.

Parameters
X
An optional numeric expression that specifies the amount by which the X
value is incremented. If this value is not specified, a default value of 0 is
assumed.
y
An optional numeric expression that specifies the amount by which the Y
value is incremented. If this value is not specified, a default value of O is
assumed.
z
An optional numeric expression that specifies the amount by which the Z
value is incremented. If this value is not specified, a default value of 0 is
assumed.
Remarks

This method increments the X, Y, and Z Cartesian displacement components of the
location_object's PosWrtRef value in a single operation. Any unspecified increments
leave the corresponding displacement values unchanged.

Examples
Dim locl As New Location " Create new Location set to default values
locl.Xyz(10,20,30,0,180,25) " Set PosWrtRef value of locl
locl.XYZInc(-3,,2) " Changes X to 7 and Z to 32

See Also

165

Location Class

Location Class | location_object.X | location_object.Y | location_object.Z | location_object.Yaw |
Location.XYZValue

166

Location Class

Location.XYZValue Method

Returns a Cartesian Location with a "total position" equal to specified X, Y, Z, Yaw,
Pitch, and Roll coordinates.

...Location.XYZValue(x,y,z,yaw,pitch,roll)

Prerequisites

None

Parameters

yaw

pitch

roll

Remarks

An optional numeric expression that specifies the X-axis displacement. If
this value is not specified, a default value of 0 is assumed.

An optional numeric expression that specifies the Y-axis displacement. If
this value is not specified, a default value of 0 is assumed.

An optional numeric expression that specifies the Z-axis displacement. If
this value is not specified, a default value of 0 is assumed.

An optional numeric expression that specifies the Yaw angle rotation. If
this value is not specified, a default value of 0 is assumed.

An optional numeric expression that specifies the Pitch angle rotation. If
this value is not specified, a default value of 0 is assumed.

An optional numeric expression that specifies the Roll angle rotation. If
this value is not specified, a default value of 0 is assumed.

167

Location Class

The XYZValue method computes and returns a Cartesian Location Object that has a
"total position" value whose displacement and orientation is equivalent to that specified

by the X, y, z, yaw, pitch, and roll arguments. This method is provided as a convenience

for constructing Location expressions.

If you wish to set the PosWrtRef value of a Cartesian Location Object equal to a set of
displacement and orientation values, it is more efficient to utilize the XYZ method instead

of XYZValue.

The following table describes the data returned in the Location Object.

Property Returned Location Object value
Type Cartesian Location
PosWrtRef Set equal to the displacement and orientation defined by x,
, Z, yaw, pitch, and roll arguments.
RefFrame Always Null
ZClearance 1.0e32 to indicate not initialized
All other properties Always zeroed.

Examples

Dim locl As Location

* Locations default to Cartesian

locl.PosWrtRef = Location.XYzZValue(10,20,30,0,180,25)

See Also

168

Location Class

" Equivalent to "locl.XYZ(10,20,30,0,180,25)"

location object.XYZ

Location Class

location_object.Y Property

Sets and gets the displacement along the Y-axis, in units of millimeters, for the
PosWrtRef value of a Cartesian Location Object.

location_object.Y = <new_value>
Or
...location_object.Y

Prerequisites

The location_object must be a Cartesian Location Object.
Parameters

None
Remarks

Internally, the PosWrtRef value of a Cartesian Location Object is stored as a sparse 4
by 4 matrix called a “homogeneous transformation”. This matrix represents the three
positional degrees-of-freedom and the three rotational degrees-of-freedom needed to
fully specify a robot or part position and orientation in Cartesian coordinates. This internal
representation has several computational advantages. However, entering the values for
the elements of a homogeneous transformation is not very convenient. To simplify data
entry, transformation values are converted to X, Y, and Z position displacement
components and three Euler angles. The three Euler angles consist of a rotation about
the Z-axis, followed by a rotation about the new Y-axis, followed by a rotation about the
new Z-axis. This set of displacements and angles is often referred to as X, Y, Z, Yaw,
Pitch, and Roll.

The property described on this page allows read and write access to one of the six
components used to specify the PosWrtRef value of the Cartesian location_object.

Accessing the X, Y, and Z properties is an efficient operation. However, accessing the
Yaw, Pitch, and Roll properties requires some computational overhead. Therefore, if you
wish to set multiple angles, it is more efficient to utilize the XYZ method.

When a “New” Cartesian Location Object is created, all six components are initially set

to 0.
Examples
Dim locl As New Location " Create new Location set to default values
Dim dy As Double
locl.Xyz(10,20,30,0,180,25) " Set PosWrtRef value of locl
dy = locl.Y " dy will be set to 20
locl.Y += 7 " locl®"s Y value will now be 27

169

Location Class

See Also

Location Class | location_object.X | location_object.Z | location_object.Yaw | location_object.Pitch |
location_object.Roll | location_object.XYZ

170

Location Class

location_object.Yaw Property

Sets and gets the Yaw angle, in units of degrees, for the PosWrtRef value of a Cartesian
Location Object.

location_object.Yaw = <new_value>
Or
...location_object.Yaw

Prerequisites

The location_object must be a Cartesian Location Object.
Parameters

None
Remarks

Internally, the PosWrtRef value of a Cartesian Location Object is stored as a sparse 4
by 4 matrix called a “homogeneous transformation”. This matrix represents the three
positional degrees-of-freedom and the three rotational degrees-of-freedom needed to
fully specify a robot or part position and orientation in Cartesian coordinates. This internal
representation has several computational advantages. However, entering the values for
the elements of a homogeneous transformation is not very convenient. To simplify data
entry, transformation values are converted to X, Y, and Z position displacement
components and three Euler angles. The three Euler angles consist of a rotation about
the Z-axis, followed by a rotation about the new Y-axis, followed by a rotation about the
new Z-axis. This set of displacements and angles is often referred to as X, Y, Z, Yaw,
Pitch, and Roll.

The property described on this page allows read and write access to one of the six
components used to specify the PosWrtRef value of the Cartesian location_object.

Accessing the X, Y, and Z properties is an efficient operation. However, accessing the
Yaw, Pitch, and Roll properties requires some computational overhead. Therefore, if you
wish to set multiple angles, it is more efficient to utilize the XYZ method.

When a “New” Cartesian Location Object is created, all six components are initially set
to 0.

Examples

Dim locl As New Location " Create new Location set to default values
Dim ang As Double

locl.Xyz(10,20,30,0,180,25) " Set PosWrtRef value of locl

ang = locl.Roll " ang will be set to 25

locl.Roll += 5 " locl®s Roll angle will now be 30 deg.

171

Location Class

See Also

Location Class | location_object.X | location_object.Y | location _object.Z | location_object.Pitch |
location_object.Roll | location_object.XYZ

172

Location Class

location_object.Z Property

Sets and gets the displacement along the Z-axis, in units of millimeters, for the
PosWrtRef value of a Cartesian Location Object.

location_object.Z = <new_value>
Or
...location_object.Z

Prerequisites

The location_object must be a Cartesian Location Object.
Parameters

None
Remarks

Internally, the PosWrtRef value of a Cartesian Location Object is stored as a sparse 4
by 4 matrix called a “homogeneous transformation”. This matrix represents the three
positional degrees-of-freedom and the three rotational degrees-of-freedom needed to
fully specify a robot or part position and orientation in Cartesian coordinates. This internal
representation has several computational advantages. However, entering the values for
the elements of a homogeneous transformation is not very convenient. To simplify data
entry, transformation values are converted to X, Y, and Z position displacement
components and three Euler angles. The three Euler angles consist of a rotation about
the Z-axis, followed by a rotation about the new Y-axis, followed by a rotation about the
new Z-axis. This set of displacements and angles is often referred to as X, Y, Z, Yaw,
Pitch, and Roll.

The property described on this page allows read and write access to one of the six
components used to specify the PosWrtRef value of the Cartesian location_object.

Accessing the X, Y, and Z properties is an efficient operation. However, accessing the
Yaw, Pitch, and Roll properties requires some computational overhead. Therefore, if you
wish to set multiple angles, it is more efficient to utilize the XYZ method.

When a “New” Cartesian Location Object is created, all six components are initially set
to 0.

Examples

Dim locl As New Location " Create new Location set to default values
Dim dz As Double

locl.XYz(10,20,30,0,180,25) * Set PosWrtRef value of locl

dz = locl.z * dz will be set to 30

locl.z += 7 " locl®"s Z value will now be 37

173

Location Class

See Also

Location Class | location_object.X | location_object.Y | location_object.Yaw | location_object.Pitch |
location_object.Roll | location_object.XYZ

174

Location Class

location_object.ZClearance Property

Sets and gets the distance in millimeters along a Z-axis that defines the safe approach
position to a Location Object.

location_object.ZClearance = <new_value>
Or
...location_object.ZClearance

Prerequisites
None

Parameters
None

Remarks

For most applications, it is not possible for the robot to move a part directly to its final
destination. Normally, the destination must be approached from an intermediate position
that allows the robot and part to avoid obstacles. Likewise, after picking up a part, it is
typically required that the part be retracted a small distance to avoid dragging the part
across the mating surface. To implement these motions to and from a final destination,
GPL includes a Move.Approach method. Instead of moving to the “total position” of the
location_obiject, this method moves the robot to a clearance position that is relative to the
location_obiject.

To simplify the specification of the “approach” or “clearance” position, each
location_obiject includes a ZClearance distance. This specifies the distance along a Z-
axis for the approach position.

If the ZWorld property of the location_object is True, the clearance position is interpreted
as being directly above (or below) the “total position” of the location_object in the world
coordinate system at the Z value specified by ZClearance. For example, if the “total
position” of the location_object is at an X, Y, Z value of (10,20,30) and ZClearance is
52.3 and ZWorld is True, the approach position would be (10,20,52.3).

A world Z clearance position is often used if the robot is loading or unloading a box and
the robot must clear the edge of the box independent of how far into the box it must
reach.

If the ZWorld property of the location_object is False, the clearance position is a relative
distance along the negative Z-axis of the robot’s tool. This clearance distance
corresponds to having the robot retract an incremental distance along the major axis of
its tool or gripper. For example, if the “total position” of the location_objectis atan X, Y, Z

175

Location Class

value of (10,20,30) and ZClearance is 52.3 and ZWorld is False and the robot’s tool is
pointed along the positive world X-axis, the approach position would be (-42.3,20,30).

A tool Z clearance position is typically utilized if the robot is tending a number of

machines and you always want to retract the gripper a fixed distance from each machine
before moving to the next Location.

By making use of GPL'’s robot kinematics option, Cartesian approach specifications can
be automatically applied to both Cartesian and Angles location_objects.

Examples
Dim locl As New Location " Create new Location set to default values
locl.Xyz(10,20,30,0,180,0) " Define destination
locl.zZWorld = True * Normally defaults to False

locl.ZClearance = 52.3
Move .Approach (locl, profl) " Use global Profile to move to (10,20,52.3)

See Also

176

Location Class | location object.ZWorld | Move.Approach

Location Class

location_object.ZWorld Property

Sets and gets the Boolean flag that indicates if the ZClearance distance is interpreted as
being along the world or tool Z-axis of a Location Object.

location_object.ZWorld = <new_Boolean_value>
Or
...location_object.ZWorld

Prerequisites
None

Parameters
None

Remarks

For most applications, it is not possible for the robot to move a part directly to its final
destination. Normally, the destination must be approached from an intermediate position
that allows the robot and part to avoid obstacles. Likewise, after picking up a part, it is
typically required that the part be retracted a small distance to avoid dragging the part
across the mating surface. To implement these motions to and from a final destination,
GPL includes a Move.Approach method. Instead of moving to the “total position” of the
location_obiject, this method moves the robot to a clearance position that is relative to the
location_obiject.

To simplify the specification of the “approach” or “clearance” position, each
location_obiject includes a ZClearance distance. This specifies the distance along a Z-
axis for the approach position.

If the ZWorld property of the location_object is True, the clearance position is interpreted
as being directly above (or below) the “total position” of the location_object in the world
coordinate system at the Z value specified by ZClearance. For example, if the “total
position” of the location_object is at an X, Y, Z value of (10,20,30) and ZClearance is
52.3 and ZWorld is True, the approach position would be (10,20,52.3).

A world Z clearance position is often used if the robot is loading or unloading a box and
the robot must clear the edge of the box independent of how far into the box it must
reach.

If the ZWorld property of the location_object is False, the clearance position is a relative
distance along the negative Z-axis of the robot’s tool. This clearance distance
corresponds to having the robot retract an incremental distance along the major axis of
its tool or gripper. For example, if the “total position” of the location_objectis atan X, Y, Z

177

Location Class

value of (10,20,30) and ZClearance is 52.3 and ZWorld is False and the robot’s tool is
pointed along the positive world X-axis, the approach position would be (-42.3,20,30).

A tool Z clearance position is typically utilized if the robot is tending a number of

machines and you always want to retract the gripper a fixed distance from each machine
before moving to the next Location.

By making use of GPL'’s robot kinematics option, Cartesian approach specifications can
be automatically applied to both Cartesian and Angles location_objects.

Examples
Dim locl As New Location " Create new Location set to defaults
locl.Xyz(10,20,30,0,180,0) " Define destination
locl.zZWorld = True * Normally defaults to False

locl.ZClearance = 52.3
Move .Approach (locl, profl) " Use global Profile, move to (10,20,52.3)

See Also

178

Location Class | location object.ZClearance | Move.Approach

Math Class

Math Class Summary

The following sections present detailed information on the standard arithmetic and
trigonometric operations that are built into GPL. As a convenience during editing, all of
these operations are provided as methods to the Math Class. This allows programmers
to display a pick list of the Math methods and easily see all of operations that are
available.

As is standard in GPL, conversions between different arithmetic types, e.g. Boolean,
Integer, Single, Double, are automatically performed as required. So, it is not necessary
to have different variations on these methods to deal with the different possible mixes of
input parameter data types. Also, these methods generally produce results that are
formatted as Double’s. These results will automatically be converted to smaller data
types as necessary, e.g. Double -> Integer, and will not generate an error so long as
numeric overflow does not occur.

The table below briefly summarizes the methods that are described in greater detail in
the following sections.

Method Description

Math.Abs (expression) Returns the absolute value of any arithmetic

expression.
Math.Acos (cosine) Ret_urns the angle that corresponds to a specified
— cosine value.
Math Asin (sine) R_eturns the angle that corresponds to a specified
— sine value.

Returns the angle that corresponds to a specified
tangent value.

Math.Atan?2 (sine_factor, Returns the angle that corresponds to the quotient of
cosine factor) two values.

Math.Ceiling (value) Returns the smallest integer number that is greater
e than or equal to a value.

Math.Atan (tangent)

Math.Cos (angle) Returns the cosine of a specified angle.
Math.Cosh (‘angle) Returns the hyperbolic cosine of a specified angle.
Math.E Returns the natural logarithmic base constant.

Returns the natural logarithmic constant, e, raised to
a specified power.

Returns the largest integer number that is less than
or equal to a value.

Returns the natural logarithm (base-e logarithm) of a
Math.Log (value) specified value.

Math.Log10 (value) Returns the base-10 logarithm of a specified value.
Math.Max (value 1, value 2) |Returns the larger of two values.

Math.Exp (exponent)

Math.Floor (value)

179

Math Class

180

Math.Min (value 1, value 2)

Returns the smaller of two values.

Math.PI

Returns the constant 1.

Math.Pow (base, exponent)

Returns a specified base value raised to a specified
power.

Math.Sign (value)

Returns a number that indicates the sign of a
specified value.

Math.Sin (angle)

Returns the sine of a specified angle.

Math.Sinh (angle)

Returns the hyperbolic sine of a specified angle.

Math.Sqrt (value)

Returns the square root of a value.

Math.Tan (angle)

Returns the tangent of a specified angle.

Math.Tanh (angle)

Returns the hyperbolic tangent of a specified angle.

Math Class

Math.Abs Method

Returns the absolute value of any arithmetic expression.
...Math.Abs(expression)

Prerequisites

None
Parameters
expression
A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.
Remarks

Returns the absolute value (i.e. the magnitude) of any numerical expression. That is, if

the expression has a value greater than or equal to zero, its value is returned unchanged.

If the expression value is negative, it is negated and returned as a positive value.

Examples

Dim value As Single

value = Math.Abs(-1.23) " Sets value to 1.23
value = Math.Abs(0) " Sets value to 0O
value = Math.Abs(3) " Sets value to 3
See Also
Math Class

181

Math Class

Math.Acos Method

Returns the angle that corresponds to a specified cosine value
...Math.Acos(cosine)

Prerequisites

None
Parameters
cosine
A required expression that evaluates to the cosine of an angle. This
value must be in the range —1 <= cosine <= 1.
Remarks

Returns the angle, in radians, that corresponds to a specified cosine value. That is, if the
cosine of an angle A is B, then this arc cosine function returns A when given a value of B.

Since the cosine function generates the same value for both positive and negative
angles, the Math.Acos method returns a value between 0 and 1 for any valid input
expression. If the full range of angles is required, the Math.Atan2 method should be used
whenever possible.

To convert radians to degrees, multiply the radians times 180/1r. }

Examples

Dim angle As Single

angle = Math.Acos(-1) " Sets angle to Pi

angle = Math.Acos(Math.Sqrt(2)/2) " Sets angle to Pi/4

angle = Math.Acos(Math.Cos(-.5)) " Sets angle to 0.5 radians
See Also

Math Class | Math.Atan2

182

Math Class

Math.Asin Method

Returns the angle that corresponds to a specified sine value.
...Math.Asin(sine)

Prerequisites

None
Parameters
sine
A required expression that evaluates to the sine of an angle. This value
must be in the range —1 <= sine <= 1.
Remarks

Returns the angle, in radians, that corresponds to a specified sine value. That is, if the
sine of an angle A is B, then this arc sine function returns A when given a value of B.

Since the sine function repeats the same series of answers when an angle traverses from
/2 to 0 to —11/2 as when an angle moves from 11/2 to —11 to —11/2, the Math.Asin function
cannot distinguish these two cases and always returns values that range from 11/2 to -
/2. If the full range of angles is required, the Math.Atan2 method should be used
whenever possible.

To convert radians to degrees, multiply the radians times 180/1T.

Examples
Dim angle As Single
angle = Math_Asin(-1) " Sets angle to —Pi/2
angle = Math_Asin(Math.Sqgrt(2)/2) " Sets angle to Pi/4
angle = Math_Asin(Math.Sin(Math_.PI-.5)) = Sets angle to 0.5 radians

See Also

Math Class | Math.Atan2

183

Math Class

Math.Atan Method

Returns the angle that corresponds to a specified tangent value.

...Math.Atan(tangent)

Prerequisites

None

Parameters

tangent

A required expression that evaluates to the tangent of an angle.

Remarks

Returns the angle, in radians, that corresponds to a specified tangent value. That is, if the
tangent of an angle A is B, then this arc tangent function returns A when given a value of
B.

Since the tangent function repeats the same series of answers over two ranges of
angles: when an angle traverses from 0 to 11/2 as when an angle moves from -11 to —11/2
and then again when an angle traverses from 0 to -11/2 as when an angle moves from -1t
to /2, the Math.Atan function cannot distinguish these cases and always returns values
that range from 11/2 to -11/2.

In addition, as the angle gets close to 11/2 or -11/2, the input parameter for this method
must approach positive or negative infinity.

To deal with both of these problems, the Math.Atan2 method should be used whenever
possible.

To convert radians to degrees, multiply the radians times 180/1r.

Examples
Dim angle As Single
angle = Math.Atan(1) " Sets angle to Pi/4
angle = Math.Atan(0) " Sets angle to O
angle = Math.Atan(Math.Tan(-3*Math.P1/4)) " Sets angle to Pi/4
See Also

184

Math Class | Math.Atan2

Math Class

Math.Atan2 Method

Returns the angle that corresponds to the quotient of two values.
...Math.Atan2(sine_factor, cosine_factor)

Prerequisites
None

Parameters
sine_factor

A required expression, which when divided by cosine_factor, is equal to
the tangent of the angle.

cosine_factor

A required expression, which when divided into sine_factor, is equal to
the tangent of the angle.

Remarks
Returns the angle, in radians, that corresponds to the tangent value computed from
sine_factor/cosine_factor and using the signs of sine_factor and cosine_factor to uniquely

determine the quadrant of the angle.

As a simplified example, if A is the sine of an angle C and B is the cosine of the angle,
then this arc tangent function returns C when given the values A and B.

Unlike the Math.Atan method, this method can return the full range of angles from +1r to
—1. In addition, it does not suffer from requiring infinite valued parameters in order to
represent any angular value. So, Math.Atan2 should be used whenever possible instead
of Math.Atan.

To convert radians to degrees, multiply the radians times 180/1r.

Examples

Dim angle As Single

angle = Math_Atan2(1,0) " Sets angle to Pi/2

angle = Math.Atan2(.5,-.5) " Sets angle to 3*Pi/4

angle = Math.Atan2(-.707,.707) " Sets angle to -Pi/4
See Also

185

Math Class

Math Class

186

Math Class

Math.Ceiling Method

Returns the smallest integer number that is greater than or equal to a value.
...Math.Ceiling (value)

Prerequisites

None
Parameters
value
A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.
Remarks

Returns the smallest integer number that is greater than or equal to the value. This is
sometimes referred to as rounding towards positive infinity.

Examples

Dim bigger As Single
bigger = Math.Ceiling(10.9999) " Sets bigger equal to 11

bigger = Math.Ceiling(1l) " Sets bigger equal to 11
bigger = Math.Ceiling(11.0001) " Sets bigger equal to 12
See Also
Math Class

187

Math Class

Math.Cos Method

Returns the cosine of a specified angle.
...Math.Cos(angle)

Prerequisites

None
Parameters
angle
A required expression that evaluates to an angle in units of radians. This
angle is not limited to values between -1 and +1 and can be arbitrarily
large.
Remarks

Returns the cosine of the angle that is specified in radians. The result of this method
ranges from -1 to +1.

To convert degrees to radians, multiply the degrees times 1/180.

Examples

Dim cos_val As Single

cos_val = Math.Cos(0) " Sets cos_val to 1
cos_val = Math.Cos(21*Math.PI) " Sets cos_val to -1
cos_val = Math.Cos(45*Math.P1/180) " Sets cos_val to 0.7071

See Also

Math Class

188

Math.Cosh Method

Returns the hyperbolic cosine of a specified angle.
...Math.Cosh(angle)

Prerequisites

None
Parameters
angle
A required expression that evaluates to an angle in units of radians. This
angle is not limited to values between -1 and +1 and can be arbitrarily
large.
Remarks

Returns the hyperbolic cosine of the angle that is specified in radians.
To convert degrees to radians, multiply the degrees times 11/180.
See Also

Math Class

Math Class

189

Math Class

Math.E Method

Returns the natural logarithmic base constant.
...Math.E

Prerequisites
None

Parameters
None

Remarks

Returns the constant that is the base value for the natural logarithmic functions,
2.7182818284590452354

Examples

Dim value As Single
value = Math.Pow(Math.E, 2)

See Also

Math Class

190

Math Class

Math.Exp Method

Returns the natural logarithmic constant, e, raised to a specified power.
...Math.Exp(exponent)

Prerequisites

None
Parameters
exponent
A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.
Remarks

Returns the value of the natural logarithmic constant, Math.E, raised to the exponent
power (i.e. Math.E”exponent).

Examples

Dim e_val As Single

e_val = Math_Exp(2) " Sets e_val to 7.3891
e_val = Math_Exp(-2.2) " Sets e_val to 0.1108
e_val = Math_Exp(Math.Log(17.1))" Sets e_val to 17.1
See Also
Math Class

191

Math Class

Math.Floor Method

Returns the largest integer number that is less than or equal to a value.
...Math.Floor (value)

Prerequisites

None
Parameters
value
A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.
Remarks

Returns the largest integer number that is less than or equal to the value. This is
sometimes referred to as rounding towards negative infinity.

Examples

Dim smaller As Single

smaller = Math.Floor(10.9999) " Sets smaller equal to 10
smaller = Math_Floor(11) " Sets smaller equal to 11
smaller = Math_.Floor(11.0001) " Sets smaller equal to 11
See Also
Math Class

192

Math Class

Math.Log Method

Returns the natural logarithm (base-e logarithm) of a specified value.
...Math.Log(value)

Prerequisites

None
Parameters
value
A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.
Remarks

Returns the exponent to which the natural logarithmic constant, Math.E, must be raised
in order to produce the value.

Examples

Dim In_exp As Single

In_exp = Math.Log(10) " Sets In_exp to 2.3026
In_exp = Math.Log(Math.E) " Sets In_exp to 1
In_exp = Math.Log(Math.Exp(3.4)) " Sets In_exp to 3.4
See Also
Math Class

193

Math Class

Math.Log10 Method

Returns the base-10 logarithm of a specified value.
...Math.Log10(value)

Prerequisites

None
Parameters
value
A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.
Remarks

Returns the exponent to which the number 10 must be raised in order to produce the
value.

Examples

Dim I_exp As Single

1_exp = Math.Log10(10) " Sets I_exp to 1
1_exp = Math.Log10(0.01) " Sets I_exp to -2
1_exp = Math.LoglO0(Math.Pow(10,3.4)) " Sets I_exp to 3.4
See Also
Math Class

194

Math.Max Method

Returns the larger of two values.
...Math.Max(value_1, value 2)

Prerequisites
None
Parameters

value_1

A required expression that evaluates to any numerical data type, e.g.

Integer, Single, Double.

value_2

A required expression that evaluates to any numerical data type, e.g.

Integer, Single, Double.
Remarks
Returns the larger of two numerical values, value_1 or value_2.

Examples

Dim bigger As Single

bigger = Math_Max(-5, -4.9) " Sets bigger to —4.9
bigger = Math.Max(-20/-4, 3) " Sets bigger to 5
bigger = Math_Max(Math.Min(100, 33), 55) " Sets bigger to 55
See Also
Math Class

Math Class

195

Math Class

Math.Min Method

Returns the smaller of two values.

...Math.Min(value_1, value_2)

Prerequisites
None

Parameters
value_1

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

value_2

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

Remarks
Returns the smaller of two numerical values, value_1 or value_2.

Examples

Dim smaller As Single

smaller = Math_Min(-5, -4.9) " Sets smaller to -5
smaller = Math.Min(-20/-4, 3) " Sets smaller to 3
smaller = Math_Min(Math_.Max(100, 33), 55)" Sets smaller to 55
See Also
Math Class

196

Math.Pl Method

Returns the constant 1.
...Math.PI

Prerequisites
None
Parameters
None
Remarks
Returns the value of 1, 3.14159265358979323846.

Examples

Dim to_deg, to_rad As Double

to_deg = 180/Math.PI ' Conversion factor from radians to degrees
to_rad = Math.P1/180 ' Conversion factor from degrees to radians
See Also
Math Class

Math Class

197

Math Class

Math.Pow Method

Returns a specified base value raised to a specified power.

...Math.Pow(base, exponent)

Prerequisites

None
Parameters
base
A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.
exponent
A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.
Remarks

Returns the value of base raised to the exponent power (i.e. base”exponent). The base
cannot be negative if the exponent is a fractional value. Also, the base cannot be zero if
the exponent is less than or equal to zero.

Examples

Dim p_val As Single

p_val = Math.Pow(2, 3) " Sets p_val to 8
p_val = Math_Pow(3, -2.2) " Sets p_val to 0.08919
p_val = Math_Pow(Math.E, Math.Log(17.1))" Sets p_val to 17.1
See Also
Math Class

198

Math Class

Math.Sign Method

Returns a number that indicates the sign of a specified value.
...Math.Sign (value)

Prerequisites

None
Parameters
value
A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.
Remarks

Returns a 1.0 if the value is greater than zero, 0 if the value is equal to zero, otherwise —
1.0 to indicate that the value is negative.

Examples

Dim v_sign As Single, int_v_sign As Integer

v_sign = Math.Sign(-21.2/(-2.3)) " Sets v_sign equal to 1.0
int_v_sign = Math.Sign(-7.2) " Sets int_v_sign equal to -1
See Also
Math Class

199

Math Class

Math.Sin Method

Returns the sine of a specified angle
...Math.Sin(angle)

Prerequisites

None
Parameters
angle
A required expression that evaluates to an angle in units of radians. This
angle is not limited to values between -1 and +1 and can be arbitrarily
large.
Remarks

Returns the sine of the angle that is specified in radians. The result of this method ranges
from -1 to +1.

To convert degrees to radians, multiply the degrees times 11/180.

Examples

Dim sin_val As Single
sin_val = Math._.Sin(-Math.P1/2) " Sets sin_val to -1

sin_val = Math.Sin(20.5*Math.PIl) " Sets sin_val to 1
sin_val = Math.Sin(45*Math.P1/180) " Sets sin_val to 0.7071
See Also
Math Class

200

Math.Sinh Method

Returns the hyperbolic sine of a specified angle.
...Math.Sinh(angle)

Prerequisites

None
Parameters
angle
A required expression that evaluates to an angle in units of radians. This
angle is not limited to values between -1 and +1 and can be arbitrarily
large.
Remarks

Returns the hyperbolic sine of the angle that is specified in radians.
To convert degrees to radians, multiply the degrees times 11/180.
See Also

Math Class

Math Class

201

Math Class

Math.Sqgrt Method

Returns the square root of a value.
...Math.Sqrt (value)

Prerequisites

None
Parameters
value
A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.
Remarks

Returns the square root of any positive number as a double precision value.

Examples

Dim root As Single, int_root As Integer

root = Math.Sqrt(1.44) " Sets root equal to 1.2
int_root = Math.Sqrt(1.69) " Sets int_root equal to 1
See Also
Math Class

202

Math Class

Math.Tan Method

Returns the tangent of a specified angle.
...Math.Tan(angle)

Prerequisites

None
Parameters
angle
A required expression that evaluates to an angle in units of radians. This
angle is not limited to values between -1 and +1 and can be arbitrarily
large.
Remarks

Returns the tangent of the angle that is specified in radians. Since the returned value will
be extremely large as the angle approaches /2 or -11/2, it is normally desirable to use
the Math.Sin and Math.Cos methods in place of this operation.

To convert degrees to radians, multiply the degrees times 11/180.

Examples

Dim tan_val As Single

tan_val = Math.Tan(0) " Sets tan_val to O
tan_val = Math.Tan(Math.P1/4) " Sets tan_val to 1
tan_val = Math.Tan(-45*Math.P1/180)" Sets tan_val to -1

See Also

Math Class

203

Math Class

Math.Tanh Method

Returns the hyperbolic tangent of a specified angle.
...Math.Tanh(angle)

Prerequisites

None
Parameters
angle
A required expression that evaluates to an angle in units of radians. This
angle is not limited to values between -1 and +1 and can be arbitrarily
large.
Remarks

Returns the hyperbolic tangent of the angle that is specified in radians.
To convert degrees to radians, multiply the degrees times 11/180.
See Also

Math Class

204

Modbus Class

Modbus Class Summary

The Modbus Class in GPL supports master access to MODBUS/TCP slave devices
connected to the local Ethernet network. MODBUS/TCP is an "open" de facto standard
protocol that is widely used in the industrial manufacturing environment to communicate
between intelligent devices. It has been implemented by hundreds of vendors on
thousands of different products to communicate digital and analog I/O and register data
between devices.

The tables below briefly summarize the properties and methods for this Class, which are
described in greater detail in the following sections.

Modbus Class Member Type Description
Constructorcreates an object for a MODBUS
New Modbus connection and specifies the IP
Method
address.

Closes any connections

modbus obi.Close Method associated with this object.
modbus_obj.ReadCoils Method Reads one or more outputs.
modbus _obj.ReadDeviceld Method Reads the device ID strings.

modbus_obj.ReadDiscretelnputs [Method Reads one or more inputs.

Reads one or more holding
registers.
modbus_obj.ReadInputRegisters [Method Reads one or more input registers.
Gets or sets the timeout, in
Get/Set milliseconds, that this connection
Property |will wait for a reply before throwing
an exception.
modbus_obj.WriteMultipleCoils Method \Writes multiple outputs.
modbus_obj.WriteMultipleRegisters|Method \Writes multiple holding registers.
modbus_obj.WriteSingleCoil Method \Writes a single output.
modbus_obj.WriteSingleRegister |Method \Writes a single holding register.

modbus obj.ReadHoldingReqgisters|Method

modbus _obj.Timeout

205

Modbus Class

modbus_object.Close Method

Closes the network connection associated with a Modbus object.
modbus_object.Close

Prerequisites
None
Parameters
None
Remarks
The Close method may be used to close the network connection and free up resources.
If no Modbus connection is active, no error occurs.

Examples

Dim ep As New IPEndPoint(''192.168.0.150")
Dim mb As New Modbus(ep)

mB.Close()
See Also

Modbus Class

206

Modbus Class

modbus_object.ReadCoils Method

Reads one or more outputs from a MODBUS slave and returns the values in a Boolean
array.

modbus_object.ReadCoils(start, number, value_array)

Prerequisites

None
Parameters
start
A required Integer expression that specifies the number of the first coil to
be read.
number
A required Integer expression that defines the number of coils to be
read.
value_array
A required Boolean array that receives the output values. The length of
the array is changed to reflect the number of values read.
Remarks

This method issues a MODBUS/TCP Read Coils request (function 1).
A new connection to the MODBUS slave is made if none currently exists.
If any network errors occur, this method throws an exception.

Examples

Dim ep As New IPEndPoint(''192.168.0.150")

Dim mb As New Modbus(ep)

Dim bool() As Boolean

mb.ReadCoils(1, 16, bool) " Read 16 outputs

See Also

Modbus Class | modbus _object.WriteMultipleCoils | modbus object.WriteSingleCoil

207

Modbus Class

modbus_object.ReadDevicelD Method

Reads device identification information from a MODBUS slave and returns as a String
value.

... modbus_object.ReadDeviceld(object _id)

Prerequisites

None
Parameters
object _id
A required Integer expression that evaluates to a number from 0 to 255
that selects the identification information to be returned.
Remarks

This method issues a MODBUS Read Device Identification request (MEI-type 13) using
the Encapsulated Interface Transport (function 43) to retrieve identification information
from the slave. The Read Device ID code is always set to 1.

The object_id parameter selects the identification information to be returned. Some
standard values are:

Object ID Description
0 \Vendor name
1 Product code
2 Major and Minor Revision

Consult the MODBUS/TCP standard for the meaning of other object_id values.

Not all MODBUS devices support this function. The String value returned by this method
depends on the particular device being referenced. Consult the manual for your
MODBUS slave device for details.

A new connection to the MODBUS slave is made if none currently exists.
If any network errors occur, this method throws an exception.

Examples

208

Modbus Class

Dim ep As New IPEndPoint(''192.168.0.150")

Dim mb As New Modbus(ep)

Dim id As String

id = mb.ReadDeviceld(0) " Read vendor name

See Also

Modbus Class

209

Modbus Class

modbus_object.ReadDiscretelnputs Method

Reads one or more inputs from a MODBUS slave and returns the values in a Boolean
array.

modbus_object.ReadDiscretelnputs(start, number, value_array)

Prerequisites

None
Parameters
start
A required Integer expression that specifies the number of the first input
to be read.
number
A required Integer expression that defines the number of inputs to be
read.
value_array
A required Boolean array that receives the input values. The length of
the array is changed to reflect the number of values read.
Remarks

This method issues a MODBUS/TCP Read Discrete Inputs request (function 2).
A new connection to the MODBUS slave is made if none currently exists.
If any network errors occur, this method throws an exception.

Examples

Dim ep As New IPEndPoint(''192.168.0.150")

Dim mb As New Modbus(ep)

Dim bool() As Boolean

mb.ReadDiscretelnputs(l, 16, bool) * Read 16 inputs

See Also

Modbus Class | modbus object.ReadInputReqisters

210

Modbus Class

modbus_object.ReadHoldingRegisters Method

Reads one or more holding registers from a MODBUS slave and returns the values in an
Integer array.

modbus_object.ReadHoldingRegisters(start, number, value_array)

Prerequisites

None
Parameters
start
A required Integer expression that specifies the number of the first
register to be read.
number
A required Integer expression that defines the number of registers to be
read.
value_array
A required Integer array that receives the register values. The length of
the array is changed to reflect the number of values read.
Remarks

This method issues a MODBUS/TCP Read Holding Registers request (function 3).
Each holding register contains a 16-bit unsigned integer value, from 0 to 65535.

A new connection to the MODBUS slave is made if none currently exists.

If any network errors occur, this method throws an exception.

Examples

Dim ep As New IPEndPoint(''192.168.0.150")

Dim mb As New Modbus(ep)

Dim regs() As Integer

mb.ReadHoldingRegisters(l, 16, regs) " Read 16 values

See Also

211

Modbus Class

Modbus Class | modbus_object.ReadInputRegisters| modbus object.WriteMultipleReqisters |
modbus_object.WriteSingleReqister

212

Modbus Class

modbus_object.ReadlnputRegisters Method

Reads one or more input registers from a MODBUS slave and returns the values in an
Integer array.

modbus_object.ReadInputRegisters(start, number, value_array)

Prerequisites

None
Parameters
start
A required Integer expression that specifies the number of the first
register to be read.
number
A required Integer expression that defines the number of registers to be
read.
value_array
A required Integer array that receives the register values. The length of
the array is changed to reflect the number of values read.
Remarks

This method issues a MODBUS/TCP Read Input Registers request (function 4).
Each input register contains a 16-bit unsigned integer value, from 0 to 65535.

A new connection to the MODBUS slave is made if none currently exists.

If any network errors occur, this method throws an exception.

Examples

Dim ep As New IPEndPoint(''192.168.0.150")

Dim mb As New Modbus(ep)

Dim regs() As Integer

mb.Read InputRegisters(l, 16, regs) " Read 16 values

See Also

213

Modbus Class

Modbus Class | modbus_object.ReadHoldingRegisters| modbus object.WriteMultipleRegisters |
modbus_object.WriteSingleReqister

214

Modbus Class

modbus_object.Timeout Property

Sets or gets the timeout period, in milliseconds, that GPL waits for a response from a
MODBUS slave.

modbus_object.Timeout = <timeout>
Or
... modbus_object. Timeout

Prerequisites
None

Parameters
None

Remarks

The property allows you to set the timeout period for all Modbus methods that perform
I/O with the MODBUS slave.

If this time is exceeded, the method throws an exception. If the timeout period is set to 0,
the timeout is disabled and a request may wait indefinitely.

Each modbus_object has an independent timeout value.

Examples

Dim ep As New IPEndPoint(''192.168.0.150")
Dim mb As New Modbus(ep)
mb.Timeout = 2000 " Timeout iIn 2 seconds

See Also

Modbus Class

215

Modbus Class

modbus_object.WriteMultipleCoils Method

Writes one or more outputs to a MODBUS slave.
modbus_object.WriteMultipleCoils(start, value_array)

Prerequisites

None
Parameters
start
A required Integer expression that specifies the number of the first coil to
be written.
value_array
A required Boolean array that contains the output values to be written.
The length of the array determines the number of coils written.
Remarks

This method issues a MODBUS/TCP Write Multiple Coils request (function 15).
A new connection to the MODBUS slave is made if none currently exists.
If any network errors occur, this method throws an exception.

Examples

Dim ep As New IPEndPoint(''192.168.0.150")

Dim mb As New Modbus(ep)

Dim bool(15) As Boolean " Array length is 16

bool(0) = True First output set, rest clear
mb.WriteMultipleCoils(l, bool) " Write 16 outputs

See Also

Modbus Class | modbus_object.WriteSingleCoil

216

Modbus Class

modbus_object.WriteMultipleRegisters Method

Writes one or more holding register values to a MODBUS slave.
modbus_object.WriteMultipleRegisters(start, value_array)

Prerequisites

None
Parameters
start
A required Integer expression that specifies the number of the first
holding register to be written.
value_array
A required Integer array that contains the register values to be written.
The length of the array determines the number of registers written.
Remarks

This method issues a MODBUS/TCP Write Multiple Registers request (function 16).

The holding registers are 16-bit unsigned integer values. Only the low 16-bits of values in
value_array are used. No error is reported if values are too big to fit in 16 bits.

A new connection to the MODBUS slave is made if none currently exists.
If any network errors occur, this method throws an exception.

Examples

Dim ep As New IPEndPoint(''192.168.0.150")

Dim mb As New Modbus(ep)

Dim value() As Integer

Redim value(7) " Set array length to 8

value(0) = 111 " First reg is 111, rest are zero
mb.WriteMultipleRegisters(l, value) " Write 8 registers

See Also

Modbus Class | modbus_object.WriteSingleReqgister

217

Modbus Class

modbus_object.WriteSingleCoil Method

Writes a single output to a MODBUS slave.
modbus_object.WriteSingleCoil(cail, value)

Prerequisites

None
Parameters
coil
A required Integer expression that specifies the number of the coil to be
written.
value
A required Boolean expression that determines the output to be
written. Any non-zero value is considered True.
Remarks

This method issues a MODBUS/TCP Write Single Coil request (function 5).

If more than one coll is to be changed, it is much more efficient to use the
WriteMultipleCoils method than multiple WriteSingleCoil methods.

A new connection to the MODBUS slave is made if none currently exists.
If any network errors occur, this method throws an exception.

Examples

Dim ep As New IPEndPoint(''192.168.0.150")
Dim mb As New Modbus(ep)

mb.WriteSingleCoil (1, True) ® Turn on coil 1
mb.WriteSingleCoil (2, False) * Turn off coil 2
See Also

Modbus Class | modbus object. WriteMultipleCoils

218

Modbus Class

modbus_object.WriteSingleRegister Method

Writes a single holding register value to a MODBUS slave.
modbus_object.WriteSingleRegister(register, value)

Prerequisites

None
Parameters
register
A required Integer expression that specifies the number of the holding
register to be written.
value
A required Integer expression that determines the output to be written to
the holding register.
Remarks

This method issues a MODBUS/TCP Write Single Register request (function 6).

The holding registers are 16-bit unsigned integer values. Only the low 16-bits of value are
used. No error is reported if value is too big to fit in 16 bits.

If more than one register is to be changed, it is much more efficient to use the
WriteMultipleRegisters method than multiple WriteSingleRegister methods.

A new connection to the MODBUS slave is made if none currently exists.
If any network errors occur, this method throws an exception.
Examples

Dim ep As New IPEndPoint(''192.168.0.150")
Dim mb As New Modbus(ep)
mb.WriteSingleRegister(l, 123)

See Also

Modbus Class | modbus_object.WriteMultipleRegisters

219

Move Class

Move Class Summary

The following pages provide detailed information on the methods of the Move Class.
This class provides the means for issuing motion commands to a robot.

The GPL system supports position, velocity, and torque-controlled motions. In the
standard case of position-controlled motions, a Move method requires two arguments: a
motion destination and a motion performance specification. Typically, a Location Object
specifies the destination and a Profile Object defines the performance parameters. The
Location can specify the destination in either Cartesian or joint coordinates and includes
clearance position information that is utilized by selected Move methods. The Profile
specifies the type of path to follow, i.e. straight-line or joint interpolated and how fast the
robot is to move.

As an ease-of-use feature, several Move methods are provided for defining the
destination of a motion. For example, methods are provided for specifying if the robot is
to move directly to a destination, move to the clearance position of a destination, move
relative to the previous destination, or move a single axis.

The table below briefly summarized the methods that are described in greater detail in
the following sections.

Member Type Description

Moves to the clearance position for a
specified Location.

Moves the tool tip of the robot along an arc
path defined by three Locations.

Moves the tool tip of the robot around a
Move.Circle Method complete circle defined by three
Locations.

Move Dela Method Paus_e_s execution of motions for a
A0V E DTy specified period of time, in seconds.

Move.Approach Method

Move.Arc Method

Moves extra, independent axes during the
next motion to a Cartesian Location.
Bypasses the system's normal motion
blending features and defines how the
execution of two sequential motions are to
be overlapped. Can also automatically
limit the rounding of corners between
sequential Cartesian motions.

Basic instruction to move to a specified
destination Location.

Convenience method to move a single
axis of a robot.

Move.Extra Method

Move.ForceOverlap Method

Move.Loc Method

Move.OneAxis Method

220

Move Class

Move.Rel

Method

Moves to a Location that is relative to the
final position and orientation of the
previous motion.

Move.SetJogCommand

Method

Sets or changes the specific mode, axis
and speed during jog (manual) control
mode.

Move.SetRealTimeMod

Method

Sets the changes in position and
orientation for the Real-time Trajectory
Modification mode.

Move.SetSpeeds

Method

Sets new target speeds and accelerations
for all axes during velocity control mode.

Move.SetTorques

Method

Sets new target torque output levels for all
motors in torque control mode.

Move.StartJogMode

Method

Initiates execution of jog (manual) control
mode.

Move.StartRealTimeMod

Method

Initiates a trajectory mode that permits a
GPL program to dynamically modify a
planned path while the path is being
executed.

Move.StartSpeedDAC

Method

Starts / stops automatic control of an
analog output based upon a robot's tool tip
speed.

Move.StartTorqueCntrl

Method

Initiates execution of torque control mode
for one or more motors.

Move.StartVelocityCntrl

Method

Switches all axes of a robot to velocity
control mode in place of position control
mode.

Move.StopSpecialModes

Method

Terminates execution of any active special
trajectory control modes.

Move.Trigger

Method

Primes the system to automatically assert
a digital output signal or a thread event at
a prescribed trigger position during the
next or current motion.

Move.WaitForEOM

Method

Pauses GPL program execution until the

current motion is completed.

221

Move Class

Move.Approach Method

Moves the robot in a position-controlled maotion to the clearance position for a specified
Location.

Move.Approach (location_1, profile_1)

Prerequisites

e High power to the robot must be enabled.
e The robot must be homed.
e The robot must be Attached by the thread.

Parameters
location_1
A required Location Object or an expression that evaluates to a
Location Object value. Can be either a Cartesian or an Angles type
value.
profile_1
A required Profile Object or an expression that evaluates to a Profile
Object value. Can specify either Cartesian straight-line or joint
interpolated motions.
Remarks

222

This method simultaneously moves all of the axes of the robot in a coordinated, position-
controlled motion to a clearance position for a specified Location.

In many cases, as the robot moves towards a part position or is being retracted from a
part position, it must first move through an intermediate clearance position. For example,
when picking up a part, it is often necessary to position the robot’s gripper directly over
the part before moving down to pick it up. Likewise, after gripping a part, it is often
necessary to retract the robot’s end effector and the part in order to clear other parts or to
avoid scrapping the part along it's supporting surface.

Since this is such a common operation, all Location Objects contain information on their
required clearance position. The Approach method automatically makes use of this
clearance data to compute an intermediate “approach position” that is taken as the
destination for the Approach method’s motion.

Specifically, each Location contains a ZClearance distance and a ZWorld Boolean flag.
The ZClearance property specifies the Z-axis offset distance for the approach position in

Move Class

millimeters. If the ZWorld property is True, the clearance position is interpreted as being
directly above (or below) the “total position” of the Location in the world coordinate
system at the Z value specified by ZClearance. For example, if the “total position” of a
Location is at an X, Y, Z value of (10,20,30) and ZClearance is 52.3 and ZWorld is
True, the approach position would be (10,20,52.3).

A world Z clearance position is often used if the robot is loading or unloading a box and
the robot must clear the edge of the box independent of how far into the box it must
reach.

If the ZWorld property of a Location is False, the clearance position is a relative
distance along the negative Z-axis of the robot’s tool. This clearance distance
corresponds to having the robot retract an incremental distance along the major axis of
its tool or gripper. For example, if the “total position” of a Location is at an X, Y, Z value
of (10,20,30) and ZClearance is 52.3 and ZWorld is False and the robot’s tool is pointed
along the positive world X-axis, the approach position would be (-42.3,20,30).

A tool Z clearance position is typically utilized if the robot is tending a number of
machines and you always wish to retract the gripper a fixed distance from each machine
before moving to the next Location.

By making use of GPL’s robot kinematics option, approach specifications can be
automatically applied to both Cartesian and Angles Location Objects.

Once the Approach method computes the desired motion destination, the motion
execution is identical to the Move.Loc method. The motion can be a Straight-line or joint
interpolated motion, can be blended with the previous and the next motions as desired,
and the performance parameters are defined by profile_1 (e.g. Speed, Accel, Decel,
AccelRamp, DecelRamp, InRange).

Examples

Dim profl As New Profile
Dim locl As New Location
loc1.XYZ(10,20,30,0,180,20)
locl.ZClearance = 10

Move .Approach(locl,profl)
Move.Loc(locl, profl)

Create new profile initialized to default values
Create new location value

Define position to move to

Require 10 mm clearance in Tool

Move to clearance position

Move to locl using profl

See Also

Location Class | Move Class | Move.Loc | Move.Rel | Profile Class

223

Move Class

Move.Arc Method

Moves the robot's tool tip in a circular arc defined by three Location values.
Move.Arc (location_1, location_2, profile_1)

Prerequisites

High power to the robot must be enabled.
The robot must be homed.

The robot must be Attached by the thread.

Circular motions can be performed while tracking a conveyor belt but cannot be
used to move from a stationary point to a belt or vice versa.

Parameters

location_1

A required Location Object or an expression that evaluates to a

Location Object value. Can be either a Cartesian or an Angles type
value.

location_2

A required Location Object or an expression that evaluates to a

Location Object value. Can be either a Cartesian or an Angles type
value.

profile_1

A required Profile Object or an expression that evaluates to a Profile
Object value. The Straight property that specifies a Cartesian straight-

line or a joint interpolated motion is ignored since the motion is always
performed in Cartesian coordinates.

Remarks

This method simultaneously moves all of the axes of a robot in a coordinated, position
controlled motion such that the robot's tool tip follows a circular arc path. The arc is
defined by the XYZ values of the final position of the previous motion and location_1 and
location_2. The performance parameters for the motion are defined by the Profile
Object, profile_1 (e.g. Speed, Accel, Decel, AccelRamp, DecelRamp).

224

Move Class

Total XY Z of locstion_2

Total XY Z of location_1

Final total X7 of previous motion

The circular arc begins at the final "total XYZ position" of the previous motion, goes
through the "total" XYZ position of location_1 and terminates at the "total" XYZ position of
location_2. The "total position” of location_1 and location_2 are computed as the results
of evaluating each Location's PosWrtRef value relative to the “total position” of their
respective reference frames, if any. If a Location is specified as an Angles type, its XYZ
position is computed using the kinematic model for the attached robot.

If profile_1 has its INRange property set to zero or a positive value, the system will bring
the robot to a stop at location_2. If this property is negative and the next motion
statement is executed before this motion reaches its destination, GPL will attempt to
blend the two motions together into a “continuous path”. Circular interpolated motions
can be blended with any of the motion types, i.e. Cartesian straight-line, joint interpolated
or other circular interpolated motions.

If the previous motion is still in process when the Move.Arc instruction is executed, the
Move.Arc instruction will temporarily suspend execution of its thread. At the conclusion
of the previous motion or as soon as the new Arc motion starts to be blended with the
previous motion, the thread will automatically continue execution at the next instruction in
the GPL procedure.

The following are special notes regarding the use of the Arc method.

e The circular arc can be defined in any arbitrary orientation and need not lie in an
cardinal plane.

e The XYZ value of location_1 need not be halfway between the starting and
ending positions of the arc although values closer to the mid point will more
accurately define the plane of the arc.

o If the three XYZ points that define the arc lie in a straight-line, the Arc method is
automatically converted to a Cartesian straight-line motion to location_2.

e When blending two Arc motions, the s-curve AccelRamp and DecelRamp
should be set to 0 and the Accel and Decel properties should be set high to
ensure that the path tracks the circular path as closely as possible.

e As with straight-line motions, the orientation of the tool of the robot is smoothly
rotated from the final orientation of the previous motion to the orientation of the
final position, location_2. The specific rotation method is a function of the
kinematic module being utilized.

Examples

Dim pO As New Location " Create location objects
Dim pl1 As New Location
Dim p2 As New Location
Dim p3 As New Location
Dim p4 As New Location

p0.XYZ(100,200,-100,0,180,0) " Define two semi-circles

225

Move Class

pl.XYZ(200,100,-100,0,180,0) * that form an "S"
p2.XYZ(300,200,-100,0,180,0)
p3.XYZ(400,300,-100,0,180,0)
p4.XYZ(500,200,-100,0,180,0)

Move.Loc(pO,pf_start) " Move to start position

Move.Arc(pl,p2,pf_on_path) " Follow first semi-circle

Move .Arc(p3,p4,pf_on_path) " Follow second semi-circle

Move .Wai tForEOM " Pause thread until motion done
See Also

Location Class | Move Class | Move.Circle | Move.Loc | Profile Class

226

Move Class

Move.Circle Method

Moves the robot's tool tip in a complete circle defined by three Location values.
Move.Circle (location_1, location_2, profile_1)

Prerequisites

e High power to the robot must be enabled.
e The robot must be homed.
e The robot must be Attached by the thread.
e Circular motions can be performed while tracking a conveyor belt but cannot be
used to move from a stationary point to a belt or vice versa.
Parameters
location_1
A required Location Object or an expression that evaluates to a
Location Object value. Can be either a Cartesian or an Angles type
value.
location_2
A required Location Object or an expression that evaluates to a
Location Object value. Can be either a Cartesian or an Angles type
value.
profile_1

A required Profile Object or an expression that evaluates to a Profile
Object value. The Straight property that specifies a Cartesian straight-
line or a joint interpolated motion is ignored since the motion is always
performed in Cartesian coordinates.

Remarks

This method simultaneously moves all of the axes of a robot in a coordinated, position
controlled motion such that the robot's tool tip follows an arc path around a complete
circle. The circle is defined by the XYZ values of the final position of the previous motion
and location_1 and location_2. The performance parameters for the motion are defined
by the Profile Object, profile_1 (e.g. Speed, Accel, Decel, AccelRamp, DecelRamp).

227

Move Class

228

Tatal X Z of locafion_2

Total XY 7 of locafion_1

Final total XY Z of previous mation

The circle begins at the final "total XYZ position" of the previous motion, goes through the
"total" XYZ position of location_1 and the "total" XYZ position of location_2 and
terminates at the starting position. The "total positions" of location_1 and location_2 are
computed as the results of evaluating each Location's PosWrtRef value relative to the
“total position” of their respective reference frames, if any. If a Location is specified as
an Angles type, its XYZ position is computed using the kinematic model for the attached
robot.

If profile_1 has its INRange property set to zero or a positive value, the system will bring
the robot to a stop at the final position. If this property is negative and the next motion
statement is executed before this motion reaches its destination, GPL will attempt to
blend the two motions together into a “continuous path”. Circular interpolated motions
can be blended with any of the motion types, i.e. Cartesian straight-line, joint interpolated
or other circular interpolated motions.

If the previous motion is still in process when the Move.Circle instruction is executed, the
Move.Circle instruction will temporarily suspend execution of its thread. At the
conclusion of the previous motion or as soon as the new Circle motion starts to be
blended with the previous motion, the thread will automatically continue execution at the
next instruction in the GPL procedure.

The following are special notes regarding the use of the Circle method.

e The circle can be defined in any arbitrary orientation and need not lie in an
cardinal plane.

e The XYZ values of location_1 and location_2 need not be equal distance
between the starting and ending positions of the circle although values closer to
120 degrees apart will increase the accuracy of the plane of the circle.

o If the three XYZ points that define the circle lie in a straight-line, the Circle
method motion is automatically converted to a short move to nowhere.

¢ When blending a Circle motion with another motion, the s-curve AccelRamp
and DecelRamp should be set to 0 and the Accel and Decel properties should
be set high to ensure that the path tracks the circular path as closely as possible.

e During the circular motion, the orientation of the tool is held constant.

Examples

Dim pO As New Location " Create location objects
Dim pl1 As New Location
Dim p2 As New Location

p0.XYZ(100,200,-100,0,180,0) " Center on (200,200), radius 100
p1.XYZ(200,300,-100,0,180,0)

Move Class

p2.XYZ(200,100,-100,0,180,0)

Move.Loc(pO,pf_start) " Move to start position

Move.Circle(pl,p2,pf_on_path) " Move in a circle

Move .Wai tForEOM " Pause thread until motion done
See Also

Location Class | Move Class | Move.Arc | Move.Loc | Profile Class

229

Move Class

Move.Delay Method

Pauses execution of a robot’'s motions for a specified period of time, in seconds.
Move.Delay (seconds)

Prerequisites

e High power to the robot must be enabled.
e The robot must be homed.
e The robot must be Attached by the thread.

Parameters
seconds
A required numeric expression that specifies the number of seconds to
delay any further robot motions, interpreted as a Double value.
Remarks

This method delays any further motions for the attached robot for the specified number of
seconds. This delay starts immediately if the robot is not moving or starts at the
completion of any in-process motions if the robot is moving. Unlike other methods that
simply suspend execution of a thread, this delay is synchronized with the movement of
the robot. So, it is very useful of inserting process delays in order to allow other
equipment to complete their operations before the robot moves to its next step. For
example, this method can be used after the robot has come to a complete halt to pick up
a part, to insert a fixed delay to allow the robot’s gripper to close and engage the part.

Another advantage of this method is that it is implemented like a command to “move to
the current position for a fixed amount of time”. This means that as soon as the delay
period begins, execution of the thread continues. This allows the thread to monitor other
activities or plan the next motion. Also, since the Delay method behaves like any other
motion, the Delay can be prematurely terminated by a RapidDecel command.

Examples

Dim profl As New Profile " Create new profile set to default values

Move.Loc(locl, profl) " Move to global locl
Move .Delay(0.2) " Delay for .2 seconds after we reach locl
See Also

Move Class | Move.WaitForEOM

230

Move Class

Move.Extra Method

Move extra, independent axes during the next motion to a Cartesian Location.

Move.Extra (axis_1_position, axis_2_position, axis_3_position, axis_4 position)

Prerequisites

Parameters

High power to the robot must be enabled.
The robot must be Attached by the thread.

axis_1_position

A required numeric expression that specifies the new position of the first
extra axis as an absolute position in units of either millimeters or degrees
as appropriate.

axis_2_position

An optional numeric expression that specifies the new position of the
second extra axis as an absolute position in units of either millimeters or
degrees as appropriate. This is only used if the robot has two or more
extra axes.

axis_3_position

An optional numeric expression that specifies the new position of the
third extra axis as an absolute position in units of either millimeters or
degrees as appropriate. This is only used if the robot has three or more
extra axes.

axis_4_position

Remarks

An optional numeric expression that specifies the new position of the
fourth extra axis as an absolute position in units of either millimeters or
degrees as appropriate. This is only used if the robot has four or more
extra axes.

Some kinematic modules include extra, independent axes that are physically part of the
robot but that do not logically factor into the calculation of the Cartesian position and
orientation of the robot. For example, the "Dual RPR Robot" and the "XYZ Plus Extra

231

Move Class

Axis Robot" both include an extra axis that does not affect the Cartesian location of the
robot.

For these types of robots, if a motion instruction is executed to a Cartesian Location
value, there is no information available to define where the extra axis is to be moved. So,
in general, the extra axis will remain in its current position during such a motion.

To address this need, the Move.Extra method can be executed prior to the execution of
a motion to a Cartesian Location. During the motion, any extra axes will be moved to
the positions specified by the Move.Extra method simultaneously with the other axes of
the robot. If the next motion is not to a Cartesian Location, the information specified in
the Move.Extra method is ignored.

As an alternative to using the Move.Extra method, a motion specified to an Angles
Location will move all of the axes of the robot including the extra axis. However, in this
case, the benefits of utilizing a Cartesian Location will be lost.

Please see the documentation for your specific Robot Kinematic Module to determine if
this instruction has any affect.

Examples

Dim pfl As New Profile " Create new profile set to default values

Move .Extra(20,Robot._DestAngles.Angle(6)) " Move 1st extra axis to 20 next motion
" Keep 2nd extra axis at same position

Move .Loc(Location.XYzZValue(300,0,100),pfl) * Move robot and extra axis

See Also

Move Class | Move.Loc | Move.Rel

232

Move Class

Move.ForceOverlap Method

Bypasses the system's normal motion blending features and defines how the execution
of two sequential motions are to be overlapped. Can also automatically limit the rounding
of corners between sequential Cartesian motions.

Move.ForceOverlap (mode, criterion)

Prerequisites

e High power to the robot must be enabled.
e The robot must be Attached by the thread.

Parameters
mode
A required arithmetic expression that defines how the overlapping is
specified and the criterion is interpreted.
criterion
A required arithmetic expression that defines how much the next motion
is to be overlapped with the currently executing motion. The
interpretation of this parameter is a function of the mode.
Remarks

In most applications, the system automatically attempts to optimize the execution of
sequential motions by blending (overlapping) the deceleration of the previous motion with
the acceleration of the next motion. For example, if a motion in the X direction is split into
two separate motion instructions and the robot is instructed not to stop between the
motions, the system will automatically blend the deceleration of the first segment with the
acceleration of the second segment such that the two motions will appear as though they
were a single continuous motion. This blending can significantly improve the
performance of a robot since the time required for accelerating and decelerating
adversely affects cycle time.

When the system automatically computes the amount by which sequential motions are
blended, it takes into account the maximum allowable acceleration and deceleration of
the robot. This permits the cycle time to be optimized without exceeding the capabilities
of the mechanical system.

However, in some cases, it is desirable to override the system's standard blending
computations by using the ForceOverlap method to define how much two motions are to
be overlapped. This method supports the following different mode's of operations.

233

Move Class

mode = 0: Explicit Overlap Specification

This mode explicitly defines the amount that two sequential motions are to be
overlapped, specified as the percentage of time of the second motion. This method has
the following benefits as compared to automatic blending:

e Allows all segments of the current motion to be overlapped with the next motion,
not just the current motion's deceleration and the next motion's acceleration
segments. This permits a much greater overlapping of the two motions.

e Provides an explicit overlapping specification in cases where the automatic
blending may not result in optimal performance. For example, if the first motion
is along the X-axis and the next motion is along the Y-axis, they are typically
dynamically decoupled. In this instance, the two motions can be arbitrarily
overlapped from 0% to 100% without violating the dynamic limitations of the
robot. Using mode 0, the amount of overlapping can be set to any amount in
order to satisfy any desired application and cycle time requirements.

This method has the following disadvantages as compared to automatic blending:

e No checking is performed to ensure that the maximum acceleration and
deceleration capabilities of the robot are not exceeded.

e The system's standard blending algorithms automatically reduce the deceleration
of the current motion and the acceleration of the next motion when this will not
adversely affect cycle time to increase the smoothness of the motion transition.

e The ForceOverlap method places more burden on the application programmer
for optimizing the motion cycle time.

The interpretation of the criterion parameter is described in the following table.

mode criterion Resulting Overlap

% of the total execution time of the next motion that is to

be overlapped with the currently executing motion. A

0 % (0-100) \value of O indicates that the two motions are not
overlapped. A value of 100 indicates that all of the next

motion is to be overlapped with the currently executing

motion if possible.

The motion overlap generated by this method is subject to the following limitations.

e Since the overlap is with respect to the currently executing motion, the next
motion will never be started prior to the execution of the current motion.

e The overlap is limited to ensure that the next motion never terminates before the
end of the currently executing motion.

e If the current motion is defined to stop, i.e. has a Profile Inrange parameter of 0
or greater than 0, no overlapping will be performed.

The following simplified drawings graphically illustrate how the overlapping is
performed. In the first set of drawings, the current motion is shorter than the next
motion. In the second set of drawings, the current motion is longer than the next motion.

234

Move Class

Shaort motion followsd by long maotion
0% Owerlap S0% Owerlap 100% Overlap

T

Long mobon followed by short motion
0% Owerlap S0% Owverlap 100% Overlap

IR

Note that when the next motion is longer than the current motion, the overlap can be
extended to almost the start of the current motion. If the next motion is shorter than the
current motion, the next motion will always be started sufficiently after the start of the
current motion to ensure that the next motion does not terminate before the current
motion.

By comparison, the following picture illustrates the amount of overlapping that can be
expected as a result of the system's automatic blending algorithm. The automatic
blending is very easy to use and ensures that the robot's dynamic capabilities are not
exceeded. However, the overlapping is generally limited to the deceleration segment of
the previous motion and the acceleration segment of the next motion.

Standard autornatic blending

mode = 1: Automatically Limit Rounding of Corners

This mode estimates the distance between the corner of two sequential Cartesian
motions (either straight-line or circular) and the closest point on the blended path. If this
distance is estimated to exceed a specified limit, the standard motion blending is over-
ridden and the overlap is set to approximately achieve the specified corner distance.

This is illustrated in the following drawing. The "Automatic blending" picture shows the
path computed by the system to minimize the motion execution time at the expense of a
large deviation from the corner point. The "Force overlapping" picture shows the path
that is automatically computed to achieve the specified maximum corner distance.

235

Move Class

Autamatic blending Force overlapping

X X

Comer

Cornar distance

dislanca

If the standard automatic blending algorithms produce a path that has a corner distance
that is approximately equal to or less than the specified corner distance, the path
computed by the standard motion blending algorithms is executed. However, if the
corner rounding is too great, the motion overlap is automatically reduced. The reduced
overlap will decrease the corner rounding and the corner distance and will therefore
result in an increase in the motion execution time.

For this mode, the interpretation of the criterion parameter is described in the following
table.

mode criterion Resulting Overlap

If required, the overlap between the next Cartesian
motion and currently executing Cartesian motion is
1 distance in mm |automatically reduced to approximately achieve a
corner distance that does not exceed the specified
criterion.

If the currently executing and the next motions are not Cartesian (e.g. straight-line or
circular) motions, this mode is ignored.

This special mode will produce the most accurate corner distances if the two motions
have relatively small s-curve ramp times and their accelerations, decelerations and
speeds are similar.

Examples

Dim pfl As New Profile
Robot.Attached = 1 " Get control of robot #1

pfl.Inrange = -1 " Don"t stop at end of motion

Move .Rel (Location._XYzValue(10), pfl) " Move 10 mm in X direction
Move.ForceOverlap(0, 50) " Overlap 50% of the next motion®s time
Move .Rel (Location.XYZValue(0,10), pfl) " Move 10 mm in Y direction

Move .ForceOverlap(l, 1) " Next corner distance should be <= 1mm
Move .Rel (Location.XYzValue(10), pfl) " Move 10 mm in X direction
Robot._Attached = 0 " Release control of robot

See Also

236

Move Class

Move Class

Move.Loc Method

Basic method for moving the robot to a specified destination in a position-controlled
motion.

Move.Loc (location_1, profile_1)

Prerequisites

e High power to the robot must be enabled.
e The robot must be homed.
e The robot must be Attached by the thread.

Parameters
location_1
A required Location Object or an expression that evaluates to a
Location Object value. Can be either a Cartesian or an Angles type
value.
profile_1
A required Profile Object or an expression that evaluates to a Profile
Object value. Can specify either Cartesian straight-line or joint
interpolated motions.
Remarks

This is the basic method for simultaneously moving all of the axes of a robot in a
coordinated, position controlled motion to a destination specified by a Location Object,
location_1, using performance parameters defined by a Profile Object, profile_1 (e.g.
Speed, Accel, Decel, AccelRamp, DecelRamp).

The destination of the motion will be the “total position” defined by location_1. For the
various forms for the Location Object, the motion destination will be computed as
follows:

e Iflocation_1 is a Cartesian Location with a reference frame, the “total position
is computed as the position and orientation that is a result of evaluating
location_1's PosWrtRef value relative to the “total position” of the reference
frame.

e Iflocation_1 is a Cartesian Location without a reference frame, location_1's
PosWrtRef value is interpreted as the absolute coordinates for the destination.

e Otherwise, location_1 is an Angles Location and the motion destination will be
the axes positions specified by location_1.

237

Move Class

If profile_1 specifies a Straight-line motion, the robot will move along a straight path in
Cartesian space. Otherwise, a joint-interpolated motion will be generated. If profile_1 has
its InRange property set to zero or a positive value, the system will bring the robot to a
stop at location_1. If this property is negative and the next motion statement is executed
before this motion reaches its destination, GPL will attempt to blend the two motions
together into a “continuous path”.

If the previous mation is still in process when the Move.Loc instruction is executed, the
Move.Loc instruction will temporarily suspend execution of its thread. At the conclusion
of the previous motion or as soon as the new motion starts to be blended with the
previous motion, the thread will automatically continue execution at the next instruction in
the GPL procedure.

Examples

Dim profl As New Profile
Dim locl As New Location
locl.Xyz(10,20,30,0,180,20)
Move.Loc(locl, profl)

Create new profile set to default values
Create new location value

Define position to move to

Move to locl using profl

See Also

Location Class | Move Class | Move.Approach | Move.Arc | Move.Extra | Move.Rel | Profile
Class

238

Move Class

Move.OneAxis Method

Convenience method to move a single axis of a robot.

Move.OneAxis (axis, axis_position, relative_flag, profile_1)

Prerequisites

High power to the robot must be enabled.

The robot must be homed.

The robot must be Attached by the thread.

An axis can be moved even if it or other axes are out-of-range of their software
limit stops so long as the motion moves the axis towards the in-range

region. This method and jog control are the only means for automatically
moving axes that are out-of-range.

Parameters
axis

A required numeric expression that specifies the number of the robot’'s
axis that is to be moved, 1-n.

axis_position

A required numeric expression that specifies the new position of the axis
as either an absolute position or a relative position, in units of either
millimeters or degrees as appropriate.

relative_flag

A required numeric expression that is interpreted as a Boolean that
indicates if the axis_position is an absolute axis position (False) or a
relative value (True).

profile_1

A required Profile Object or an expression that evaluates to a Profile
Object value. Can specify either Cartesian straight-line or joint
interpolated motions.

Remarks

This method is primarily a convenience and diagnostic function that moves a single axis
of the Attached robot. If the relative_flag is True, the new axis position is computed by

239

Move Class
adding the axis_position value to the final axis position of the previous motion. Otherwise,

the axis_position is taken as the new absolute position for the axis.

When this motion is generated, the positions of all of the other axes of the robot remain
unchanged.

Once the OneAxis method computes the desired position for each axis, the motion
execution is identical to the Move.Loc method except that Straight-line motions are not
permitted and this method permits axes to be outside of their software limit stops.

This motion can be blended with the previous and the next motions as desired. The
performance parameters are defined by profile_1 (e.g. Speed, Accel, Decel,
AccelRamp, DecelRamp, InRange).

Examples

Dim profl As New Profile " Create new profile set to default values
Move.OneAxis(1,20,True,profl) * Increment axis 1 by 20 mm or deg

See Also

Move Class | Move.Loc | Move.Rel

240

Move Class

Move.Rel Method

Moves the robot in a position-controlled motion to a Location that is relative to the final
position and orientation of the previous motion.

Move.Rel (location_1, profile_1)

Prerequisites

e High power to the robot must be enabled.
e The robot must be homed.
e The robot must be Attached by the thread.

Parameters
location_1
A required Location Object or an expression that evaluates to a
Location Object value. Can be either a Cartesian or an Angles type
value.
profile_1
A required Profile Object or an expression that evaluates to a Profile
Object value. Can specify either Cartesian straight-line or joint
interpolated motions.
Remarks

This method simultaneously moves all of the axes of the robot in a coordinated, position
controlled motion to a destination specified by the “total position” of location_1, which is
interpreted as an incremental change relative to the final position and orientation of the
previous motion. If location_1 is a Cartesian Location, the “total position” of location_1 is
evaluated relative to the final Cartesian position and orientation of the previous motion. If
location_1 is a Angles Location, the motion’s destination is computed by adding
location_1's set of angles to the final angles of the previous motion.

Note, that this motion is relative to the actual final position and orientation of the previous
motion and not the planned destination of the previous motion (Robot.Dest,
Robot.DestAngles). The planned destination remains the same even if the motion
prematurely terminates execution. This was designed to allow a motion to be retried.
However, the actual final position and orientation is modified by a Soft E-Stop, a Hard E-
Stop, a RapidDecel command or other conditions. So, the Rel method is designed to
allow a program to do an incremental motion from wherever the robot actually stopped.

241

Move Class

For Cartesian Locations, it should be keep in mind that the incremental motion is
performed in the tool coordinate system of the robot. For example, a positive incremental
Z motion will not necessarily move up vertically in the world coordinate system. It will
move along the Z-axis of the robot’s end effector.

Once the Rel method computes the desired motion destination, the motion execution is
identical to the Move.Loc method. The motion can be a Straight-line or joint interpolated
motion, can be blended with the previous and the next motions as desired, and the
performance parameters are defined by profile_1 (e.g. Speed, Accel, Decel,
AccelRamp, DecelRamp, InRange).

Examples

Dim profl As New Profile " Create new profile set to default values
Dim locl As New Location * Create new location value
locl.XYz(10,20,30,0,180,20) " Define position to move to
Move.Loc(locl, profl) " Move to locl using profl

locl.XYZ(10) * Define incremental motion in X

Move.Rel (locl, profl) " Move 10 mm in Tool X, not World

See Also

Location Class | Move Class | Move.Approach | Move.Extra | Move.Loc | Profile Class

242

Move Class

Move.SetJogCommand Method

Sets or changes the specific mode, axis and speed during jog (manual) control mode.
Move.SetJogComand (jog_mode, jog_axis, jog_speed)

Prerequisites

High power to the robot must be enabled.
The robot does not need to be homed.
The robot must be Attached by the thread.
The robot must be in jog control mode.

Parameters
jog_mode

A required expression that evaluates to an Integer value. This value
specifies the manual control mode that should now be in effect.

jog_axis

A required expression that evaluates to an Integer value. This defines
the robot or Cartesian axis that is to be moved under manual control.

jog_speed

A required expression that evaluates to a percentage value between
+100 and -100. This specifies the target speed and direction for the
manual control motion. The system automatically generates a motion
profile to accelerate up to this speed and to decelerate to a stop after the
manual motion is completed.

Remarks

After a robot has been placed into jog (manual) control mode, this method must be
executed to define the manual control mode, the axis to be manually controlled and the
speed at which the axis is to be moved. This method can be executed at any time during
jog control mode and as many times as desired. It simply posts the parameters to the
trajectory generator for execution. If multiple commands are posted in the same
trajectory cycle, the trajectory generator will only use the information from the last
command posted before the start of the cycle. The trajectory generator automatically
smoothly transitions between modes and target speeds.

For example, if the robot is being moved in World manual control mode and a new
command to move in joint manual mode is received, the trajectory generator will

243

Move Class

decelerate the World manual mode motion to a stop prior to starting the acceleration up

to the target joint manual mode speed. As another example, if the robot is being moved

in any mode and a new command is posted that changes the target speed, the trajectory
generator will smoothly accelerate or decelerate to achieve the new speed.

The interpretation of the parameters to this method are as follows:

Jog_Mode | Jog_Axis Jog_Speed Description
0 Ignored. Ignored. Idle, robot not moving.
Joint manual control mode. A
Robot joint Joint speed and single robot axis can be moved. The
1 S robot does not need to be
number, 1-n |direction.
homed. Axes that are out-of-range
can be moved into range.
. \World manual control
Cartesian
A) . mode. Translates or rotates along or
axis: 1:X, 2:Y, |Cartesian speed . ;
2 i : o about a single world (base) Cartesian
3:Z, 4:RX, and direction. : .
)) coordinate axis. The robot must be
5:RY, 6:RZ
homed.
. [Tool manual control mode.
Cartesian
A) . Translates or rotates along or about a
3 axis: 1:X, 2:Y, |Cartesian speed | _. . .
i : S single tool (gripper) Cartesian
3:Z, 4:RX, and direction. : .
)) coordinate axis. The robot must be
5:RY, 6:RZ
homed.
Robot joint Positive values |Free manual control mode. Puts
number, 1-n, orffree the joint andjany number of axes into torque
4 ; .
-1 to free all |negative values |control mode to permit the axes to be
joints lock the joint. manually pushed into position.

For Joint, World and Tool control modes, if the magnitude of the speed is set to 5% or
less, the robot will move a discrete increment and then stop rather than move
continuously. In order to move an additional small increment, the speed must be set to 0
and then to a value of 5% or less. This is very convenient for fine positioning the robot.

WARNING: Any axis commanded to move at greater than 5% speed
will continue to do so until stopped. It is responsibility of the GPL
Project to have suitable safe guards and time outs to ensure that a
motion is terminated when required.

Examples
Robot.Attached = 1 " Get control of robot #1
Move . StartJogMode() " Initiate jog control mode

Move .SetJogCommand(3, 3, 50) " Set tool mode, Z-axis, 50% speed
Thread.Sleep(4000)

Move.SetJogCommand(2, 1, -50) " Change to world mode, X-axis, -50% speed
Thread.Sleep(4000)

Move.StopSpecialModes " Terminate jog mode
Robot.Attached = 0 " Release control of robot
See Also

244

Move Class

Move Class | Move.StartJogMode | Move.StopSpecialModes

245

Move Class

Move.SetRealTimeMod Method

Sets the incremental changes in position and orientation for the Real-time Trajectory
Modification mode.

Move.SetRealTimeMod (changes_array)

Prerequisites

e High power to the robot must be enabled.
e The robot must be Selected or Attached by the thread.
e The robot must have the Real-time Trajectory Modification method enabled.

Parameters
changes_array

A required array of Doubles that contains 6 incremental change values
corresponding to the 3 position and 3 orientation degrees-of-freedom
(Dx, Dy, Dz, Rx, Ry, Rz). If Move.StartRealTimeMod has specified
single steps, these parameters are in units of mm and degrees. If a
continuous change mode has been specified, these parameters are in
units of mm/sec and deg/sec.

Remarks

After the Real-time Trajectory Modification mode has been enabled, this method must be
executed to specify the incremental coordinate modifications. If the changes are defined
as single steps, this method must be executed once for each step. If the changes are
interpreted as continuous changes, this method must be execute each time an
incremental speed is to be altered.

This method can be executed at any time and as many times as desired. It simply posts
the desired changes to the trajectory generator. Each time that the trajectory generator
executes, it checks for any new posted values. If this method is executed multiple times
before the trajectory generator executes again, only the last values posted will have an
effect.

Please see the documentation for the Move.StartReal TimeMod method for a description
of how the incremental changes are interpreted.

Examples

Public Sub MAIN
Dim rtmod As New Thread(*'rtmod')
rtmod.Start " Start RT change service thread
Robot.Attached = 1

246

Move Class

Move .StartReal TimeMod(1,2) " Turn on RT correction function
Move.Loc(pO, pf0)

Move.Loc(pl, pf0)

Move .Wai tForEOM

rtmod.Abort

Move .StopSpecialModes * Turn off RT correction function
Robot.Attached = 0

End Sub

Public Sub rtmod

Dim rtm_spd(6) As Double
While True
Controller._SleepTick(2) " Adjust every other traj tick
If (Signal.DI0(20001)) Then
rtm_spd(2) = 10 " +10 mm/sec in Z
Elself (Signal.DI0(20002)) Then
rtm_spd(2) = -10 * -10 mm/sec in Z
Else
rtm_spd(2) = 0 " Don"t move
End If
Move.SetRealTimeMod(rtm_spd) * Set new speed
End While
End Sub

See Also

Move Class | Move.StartRealTimeMod | Move.StopSpecialModes | Robot.CartMode |

Robot.RealTimeModAcm | Thread.Schedule

247

Move Class

Move.SetSpeeds Method

Sets new target speeds for all axes of a robot in velocity control mode.
Move.SetSpeeds (speed_array, profile_1)

Prerequisites

High power to the robot must be enabled.
The robot must be homed.

The robot must be Attached by the thread.
The robot must be in velocity control mode.

Parameters
speeds_array

A required array of Doubles that contains a speed specification for each
axis of the robot. The first array element (0) corresponds to the target
speed for the robot’s first axis. One value must be provided for each axis
of the robot. Each array element is interpreted in units of mm/sec (linear
axes) or deg/sec (rotary axes). These values are limited by the
maximum permitted joint speeds, "100% joint speeds” (DatalD 2700) *
"Max %speed allowed" (DatalD 2704).

profile_1

An optional Profile Object or an expression that evaluates to a Profile
Object value. This value defines the acceleration, deceleration and
acceleration/deceleration ramp times to be use to change the speed of
each axes. In certain cases, it may not be possible to honor the ramp
times without over-shooting the target velocity, but the acceleration and
deceleration limits are adhered to. For example, this can occur if an axis
is accelerating to a high velocity and suddenly a new, lower velocity
target is specified. If this parameter is not specified, the Profile specified
by the last executed Move.SetSpeeds or Move.StartVelocityCntrl
method will be utilized.

Remarks

After a robot has been placed into velocity control mode, this method can be used to
modify the target speed levels for each axis. This method can be executed at any time
and as many times as desired. It simply posts the desired target speeds to the trajectory
generator. The next time that the trajectory generator executes, the specified speeds will
be taken as the new target values. If this method is executed multiple times before the
trajectory generator executes again, only the last values posted will have an effect.

248

Examples

Dim speeds(12) As Double
Dim pfl As New Profile
Dim ii As Integer
Robot.Attached = 1

Move.StartVelocityCntri1(0, O, speeds, pfl)

For 1i = 36 To 360 Step 36
speeds(0) = ii
Move . SetSpeeds(speeds)
Controller._Sleeptick(30)
Next ii
Move .StopSpecialModes
Robot.Attached = 0

See Also

Move Class

All Double speeds will be 0
Use default accel/decel

Get control of robot #1
Set to velocity control mode

New speed value
Ramp axis 1 speed
Wait a little while

Terminate velocity mode
Release control of robot

Move Class | Move.StartVelocityCntrl | Move.StopSpecialModes

249

Move Class

Move.SetTorques Method

Sets new target torque output levels for all motors in torque control mode.
Move.SetTorques (torques_array)

Prerequisites

High power to the robot must be enabled.

The robot does not need to be homed.

The robot must be Attached by the thread.

One or more motors of the robot must be operating in torque control mode.

Parameters
torques_array

A required array of Doubles that contains a torque specification for each
motor of the robot. The first array element (0) corresponds to the torque
value for the robot’s first motor. Array elements for motors that are not
torque controlled are ignored. Each array element is interpreted as a
percentage, where a value of +100 or —100 indicates that the torque
output should be equivalent to the full positive or negative rated motor
torque. Since the peak motor torque can usually be higher than the rated
torque, values greater than +- 100% are permitted.

Remarks

After selected motors of a robot have been placed into torque control mode, this method
can be used to modify the target torque levels. This method can be executed at any time
and as many times as desired. It simply posts the desired torque levels to the trajectory
generator. The next time that the trajectory generator executes, the specified torque
levels will be taken as the new target values. If this method is executed multiple times
before the trajectory generator executes again, only the last values posted will have an
effect.

Examples

Dim torques(12) As Double * All Double torques will be O
Dim ii, jj As Integer

Robot.Attached = 1 " Get control of robot #1
Move.StartTorqueCntri(l, 0, torques) " Set motor 1 to torque mode
For jj = 1 To 10

For ii = 0 To 100

Controller.Sleeptick() " Wait till next trajectory cycle

torques(0) = 1i/10 " New torque value

Move .SetTorques(torques) " Ramp torque from 0% to 10%
Next ii

250

Move Class

Next jj

Move.StopSpecialModes " Terminate torque mode

Robot.Attached = 0 " Release control of robot
See Also

Move Class | Move.StartTorgueCntrl | Move.StopSpecialModes

251

Move Class

Move.StartJogMode Method

Initiates execution of jog (manual) control mode.

Move.StartJogMode ()

Prerequisites

High power to the robot must be enabled.

The robot does not need to be homed.

The robot must be Attached by the thread.

This mode is not compatible with torque, velocity or other special control modes.
This mode is terminated if the GPL program that has the robot attached hits a
breakpoint, is single stepped, or stops execution for any reason.

Parameters

None

Remarks

252

This method switches all of the axes of a robot from the standard position controlled
mode to jog (manual) control mode. This is the mode that is utilized by the Virtual and
Hardware Manual Control Pendants (MCP) to implement joint, world, tool and free
manual control modes. This method and the Move.SetJogCommand method are
provided to permit these same manual modes to be easily implemented by a GPL
Project. For example, these methods can be used by a GPL program to implement
manual control modes via a graphics HMI or a joystick.

When a robot is placed into this mode, it is moved in a manner similar to velocity control
mode in that a specified axis or group of axes are accelerated and moved at a specified
continuous speed until they are instructed to change their speed.

WARNING: Any axis commanded to move will continue to do so until
stopped. So, it is responsibility of the GPL Project to have suitable
safe guards and time outs to ensure that a motion is terminated when
required.

When this method is executed, it first waits for any in-process position controlled motions
to be completed. It then transitions all axes into jog control mode. Once in this mode, the
Move.SetJogCommand method must be executed to set and change the specific
manual mode, axis and motion speed.

Move Class

When an axis speed is specified, the setting of the "System Test Speed" is ignored to
permit the robot to be moved in a consistent manner when debugging applications.

To permit the axes of a robot to be moved back into range if they are accidentally moved
beyond their stop limits, joint control mode permits out-of-range axes to be moved back in
range, but not further out-of-range. In addition, the robot does not need to be homed in
order to move the axes in joint control mode to permit it to be manually repositioned.

The robot will remain in jog control mode until one of the following occurs:

The Move.StopSpecialModes method is executed to terminate this mode.

A hardware error or hard E-stop or soft E-stop occurs.

A RapidDecel is issued.

The robot is detached by the user program either by issuing a detach command
or by halting user program execution for any reason (this includes single stepping
a GPL program).

PONPE

Examples

Robot._Attached = 1 " Get control of robot #1

Move . StartJogMode() " Initiate jog control mode

Move . SetJogCommand(3, 3, 50) " Set tool mode, Z-axis, 50% speed
Thread.Sleep(4000)

Move.SetJogCommand(2, 1, -50) " Change to world mode, X-axis, -50% speed
Thread.Sleep(4000)

Move .StopSpecialModes " Terminate jog mode
Robot.Attached = 0 " Release control of robot
See Also

Move Class | Move.SetJogCommand | Move.StopSpecialModes

253

Move Class

Move.StartRealTimeMod Method

Initiates special trajectory mode that permits a GPL program to make incremental
changes in the position and orientation of a planned path while the path is being
executed.

Move.StartRealTimeMod (coordinates, change_type)

Prerequisites

e The "Advanced Controls" license must be installed
e High power to the robot must be enabled.
e The robot must be homed.
e The robot must be Attached by the thread.
e This mode is only compatible with the standard position control mode and
Cartesian interpolated motions.
Parameters

coordinates

A required numeric expression that specifies the coordinate system in
which the incremental changes are interpreted and the coordinate
system in which the accumulated modifications are stored.

change_type

A required numeric expression that defines if the incremental changes
are applied once or if the changes are repeatedly applied (i.e. they are
interpreted as speeds).

Remarks

This method initiates a special trajectory mode whereby a GPL program can specify
incremental changes in position and orientation that are immediately applied to the
executing trajectory. When this mode is active, each time that the Trajectory Generator
computes a Cartesian set point, it automatically modifies the set point to include the
accumulated incremental real-time changes.

This method can be used to incorporate sensor feedback or to alter a baseline path for
special processes. For example, if the tool tip must maintain a specific height as it moves
above a distorted surface, input from a height sensor can be used to modify the planned
path as the tool is moving. As another example, if the robot is used for welding, a
weaving motion can be superimposed on the basic weld path by adding a real-time
change that moves back and forth perpendicular to the direction of travel.

254

Move Class

When this method is executed, the Attached robot is immediately placed into this special
trajectory mode even if a Cartesian motion is currently in progress. Thereafter, any
thread can post incremental changes in position (Dx, Dy, Dz) and orientation (RX, Ry, Rz)
that will dynamically alter the planned path. Since these changes are immediately added
to the planned path, the GPL program must guarantee that the magnitudes of each
change is small to avoid abrupt motions. If no motion is being executed, the changes will
alter the stationary position of the robot's tool. If a motion or sequence of maotions are
being executed, the changes will alter the planned tool path. While this mode is active,
only Cartesian motions are permitted. This mode can span an arbitrary sequence of
Cartesian motions and continues to operate even when no motion is being executed.

To simplify the use of this method for different applications, the coordinates parameter
specifies one of several choices for the coordinate system in which the incremental
changes are interpreted and accumulated. To illustrate these alternatives, we will
consider the following basic Cartesian motion where the tool orientation is rotated
counter-clockwise as the tool tip moves along a straight-line path from p1 to p2..

p2

T
‘ym

Basic Cartesian Motion With Orientation Change

If the incremental changes are specified in World coordinates and are accumulated in
World coordinates (World-World mode), incremental changes in position simply shift the
entire path and changes in orientation rotate the tool tip about its end point.

N

Position Change Orientation Change

Change in World, Accumulated in World

This mode decouples changes in orientation and position and so is conceptually very
easy to use. It is analogous to the motions permitted with the Manual Control Pendant's
World jog mode.

If the incremental changes are specified in Tool coordinates and the incremental changes
are accumulated in World coordinates (Tool-World mode), incremental changes in
position shift the path in a manner similar to World-World mode, but the shifts are
initially evaluated along the instantaneously direction of the tool. However, changes in
orientation not only change the orientation of the tool, but also rotate the subsequent
direction of the planned path.

255

Move Class

256

P

Ny

FPosition Change Orientation Change

Change in Tool, Accumulated in World

This mode can best be understood if you imagine you are flying the tool around the
workspace. You can slip the tool right or left or move forward or backwards to offset the
path. However, if you turn the tool, you are setting it course along a new baseline path
and the taught path is relative to this new baseline. This method is analogous to the
motions permitted with the Manual Control Pendant's Tool jog mode.

The final method specifies changes in Tool coordinates and accumulates the incremental
changes in Tool coordinates (Tool-Tool mode).

~

<Y

Fosition Change Orentation Change

Change in Toel, Accumulated in Tool

This mode is analogous to dynamically changing the dimension and orientation of the
robot's tool. If you change the orientation in this mode, it generates a simple rotation
about the tool tip. However, if you change the position, this is equivalent to offsetting the
tool and will cause the path to curve if the orientation of the tool changes. If the tool does
not change its orientation, incremental changes in position simply shift the path.

The set of coordinate systems to be used are defined by the coordinates parameter as
follows:

COO\;gI'S:teS Description

0 Idle. Ignore incremental change commands. Provided for
completeness.

1 \World-World mode. Changes specified in the World coordinate
system and accumulated in the World coordinate system.
Tool-World mode. Changes specified in the Tool coordinate system

2 . .
and accumulated in the World coordinate system.

3 Tool-Tool mode. Changes specified in the Tool coordinate system
and accumulated in the Tool coordinate system.

Move Class

During each Trajectory set point evaluation, any combination of incremental changes in
any of the six degrees-of-freedom (Dx, Dy, Dz, Rx, Ry, Rz) can be simultaneously
applied. However, in terms of computational efficiency, if only incremental position
changes are made, the computational requirements for applying the real-time
modifications are significantly reduced from the general case of position and orientation
changes. So, incremental orientation changes should be specified as 0 unless needed.

As a convenience, the incremental changes can be specified as single steps that are only
applied once or continuous changes that continue until new values are specified. The
continuous change modes are useful to produce smooth continuous changes without
requiring that a GPL thread post new values each trajectory cycle. The interpretation of
the incremental changes are specified by the change_type parameter as follows:

change_type

Value Description
0 No change. Equivalent to specifying O for all 6 coordinates.
1 Once. Changes are applied a single time and then no further

changes are made until a new set of changes are posted.
Continuous, ignore System Speed. Changes are interpreted as

2 speeds (mm/sec or deg/sec) and are not affected by the setting of
the System Speed on the web interface Operator Control Panel.
Continuous, consider System Speed. Changes are interpreted as
3 speeds (mm/sec or deg/sec) and are affected by the setting of the
System Speed on the web interface Operator Control Panel.

This mode will remain in effect until one of the following occurs:

1. The Move.StopSpecialModes method is executed to terminate all special
control modes for the robot.

A hardware error or hard E-stop or soft E-stop occurs.

A RapidDecel is issued.

The robot is detached by the user program either by issuing a detach command
or by halting user program execution for any reason.

pwON

Examples

Example #1: Move up/down in Z based upon DIO signals

Public Sub MAIN
Dim rtmod As New Thread(*'rtmod')

rtmod.Start " Start RT change service thread
Robot.Attached = 1
Move .StartReal TimeMod(1,2) " Turn on RT correction function

Move.Loc(p0O, pf0)
Move.Loc(pl, pf0)
Move .Wai tForEOM
rtmod.Abort

Move .StopSpecialModes ® Turn off RT correction function
Robot.Attached = 0
End Sub

Public Sub rtmod
Dim rtm_spd(6) As Double

While True
Controller._SleepTick(2) " Adjust every other traj tick
If (Signal .DI0(20001)) Then
rtm_spd(2) = 10 * +10 mm/sec in Z
Elself (Signal.D10(20002)) Then
rtm_spd(2) = -10 " -10 mm/sec in Z

257

Move Class

258

Else
rtm_spd(2) = 0
End If

Don"t move

Move .SetReal TimeMod(rtm_spd) " Set new speed

End While
End Sub

Example #2:

Const WEAVE_SPEED As Double = 20

Const WEAVE:MAGNITUDE As Doubl

e

Const WEAVE_PRIORITY As Integer

Const WEAVE_HP_TIME As Double
Const WEAVE_N_PHASE As Double

Private WeaveMode As Integer

" Standard motion program.

Public Sub MAIN

5 -
16 *

Dim weave As New Thread(‘'Weave')

WeaveMode = 0
weave.Start
Robot._Attached = 1
Move.Loc(p0O, pfj)
Move .Wai tForEOM

Move .StartReal TimeMod(3,2)
WeaveMode = 1

Move.Loc(pl, pfs)
Move.Loc(p2, pfs)

Move .WaitForEOM

WeaveMode = 3
While (weave.ThreadState =
Thread.Sleep(2)
End While
Move.StopSpecialModes
Robot._Attached = 0
End Sub

" Weaving function

Public Sub Weave

2) b

Add Tool-Y weaving to baseline motions

Weave moves at this mm/sec speed
Weave magnitude

Execution priority for the RealTimeMod
thread

Estimated execution time

RealTimeMod executed this many msec
after trajectory generator.

Controls operation of weaving thread

0 = Not active

1 = Start weaving

2 = Weave executing
3 = Stop weaving

Weaving not active
Start weaving thread

Turn on RT correction function
Start weaving

Stop weaving
Wait until weaving stops

Turn off RT correction function

Dim rtm_spd(6), traj_rate, dy As Double

traj_rate =

Controller .PDbNum(600,1)*1000 " Traj update rate in msec

Thread.Schedule(WEAVE_PRIORITY, traj_rate, WEAVE_HP TIME, _
WEAVE_N_PHASE) *

While True
Select WeaveMode
Case 0O

Case 1

rtm_spd(1) = WEAVE_SPEED
Move.SetReal TimeMod(rtm_spd) " Start weaving

WeaveMode = 2

Case 2

dy = Robot.RealTimeModAcm.Y

Increase task priority

Weave not active

Start weaving
" Set default speed

" Weaving active

Weaving active
" Get current weave magnitude

If (Math.Abs(dy) >= WEAVE_MAGNITUDE) Then
rtm_spd(1l) = -WEAVE_SPEED*Math.Sign(dy) " Reverse direction
Move.SetReal TimeMod(rtm_spd) " Set new speed

End If

Case 3

" Stop weaving
dy = Robot.RealTimeModAcm.Y

" Get current weave magnitude

Move Class

If (Math.Abs(dy) <= 1.5*WEAVE_SPEED) Then
Thread.CurrentThread.Abort " Weave at center, stop
Else
rtm_spd(1l) = -WEAVE_SPEED*Math.Sign(dy) " Reverse direction
Move.SetRealTimeMod(rtm_spd) * Set new speed
End If
End Select
Thread.Sleep(1) * Wait for next trajectory cycle
End While
End Sub

Datalog of Cartesian X/Y axes during weaving

B Precise Datalogger - datalog[1].pdl | — I:I|ﬂ
Flie Heb

—l-'— PRECISE Conmert \Wesvng ecarple. = ot falowed by mabory

E AUTOMATION Focoded ON012000003141 022750 BolSanpe 3952 Sanglrg mieval 008

Y vemeal | 550 B8] r, fe| 4| b3 |] Mot |
e S el e

Select Data Types o Doplay Gaphing Comtele ‘
st in e

Lok cick o dezplay vabies, mght clich andl deg o soomin 1]

8404
oo 114 FLE e

| Wemsion: 2100 | Fle: C\Documents and Settngr\brucelLocsl § ebings\T empoary rleret Fles\ Content ESHT PG 26Pdsalgll | pdl L

See Also

Move Class | Move.SetRealTimeMod | Move.StopSpecialModes | Robot.CartMode |
Robot.RealTimeModAcm

259

Move Class

Move.StartSpeedDAC Method

Starts, alters or stops automatic control of an analog output channel (DAC) whose value
is computed based upon the robot's instantaneous tool tip speed.

Move.StartSpeedDAC (mode, n_segments, speed_array, dac_array)

Prerequisites

The "Advanced Controls" license must be installed
High power to the robot must be enabled.

The robot must be homed.

The robot must be Attached by the thread.

This mode is only compatible with the standard position control mode and
Cartesian interpolated motions.

Parameters
mode

An optional numeric expression that is not currently used. This is a
placeholder for future capabilities.

n_segments

A required numeric expression that evaluates to the Integer number of
piecewise linear interpolation segments that define how tool tip speeds
are converted to raw DAC commands. If this value is 0 or negative, the
SpeedDAC mode is terminated. The maximum permitted value for this
parameter is 3.

speed_array

An optional array of Doubles that define the ranges of speeds that are
interpolated in each piecewise linear segment. If n_segments is 1, the
first array element (0) and the second array element (1) define the range
of tool tip speeds that are converted to DAC values by interpolating
between the first two dac_array elements. If n_segments is 2, the
second array element (1) and the third (2) define the range of tool tip
speeds that are converted by interpolating between the second and third
dac_array elements. Speed values must be 0 or greater and must
monotonically increase within the speed_array. That is, element (1)
must be greater than element (0), and (2) must be greater than (1),

etc. All speeds are in units of mm/sec.

dac_array

260

Move Class

An optional array of Doubles that define the ranges of DAC values that
are output for each of the piecewise linear interpolation segments. The
first two elements (0) and (1) define the range of DAC values that are
interpolated for the first segment. Each entry in this array is interpreted
as a raw DAC value from 32767 to -32768, which represent voltages
from +10VDC to -10VDC. There is no restriction on values stored in
each DAC element, i.e. sequential entries can be increasing, decreasing

or the same.

Remarks

This method initiates, changes or terminates a special trajectory mode that computes the
instantaneous commanded speed of the attached robot's tool tip and automatically sets
the value of an analog output channel (DAC) based upon the computed speed. The
trajectory generator computes the tool tip speed each time it evaluates the path set
points. This computation takes into consideration all of the characteristics of the
trajectory including accelerations, decelerations, motion blending, any reduced speed
due to the global test speed set by the Operator Control Panel, real-time path

modifications, etc.

The computed tool tip speed is converted to a DAC value using one or more piecewise
linear interpolation segments. If a single segment is specified, a range of speeds are
linearly converted to a range of DAC values. Speeds that are less than the lowest value
in the speed range are set to the first value in the DAC range. Speeds that are higher
than the highest value in the speed range are set to the last value in the DAC range. If
two or more linear segments are specified, a piecewise linear relationship between tool

tip speeds and DAC values can be represented.

The following graph illustrates how tool tip speeds are converted to DAC values for a

sample two segment (n_segments=2) specification:

DA Output

&
dac_aray2) -|———————————————

dac_arraw(1) =f————————m

dac_arraw() -

|
Spesad
array(a)

Speed
arravif)

Speed
&ravi2)

Tool Tip
Spead

Once the DAC value is computed by the Trajectory Generator using the piecewise linear
specification, the value is sent to the servo code. The servo code interpolates between
sequential DAC values at the PID loop evaluation rate and writes the interpolated value
to the hardware DAC. This extra level of interpolation ensures that the DAC value will be

changed smoothly and accurately.

261

Move Class

262

If this method is called with 0 segments specified, this special trajectory mode is
terminated and the DAC value is set to O.

This mode can be started, modified and stopped at any time when the robot is idle or
moving. However, once started, only Cartesian interpolated motions (e.g. straight-line or
circular interpolated) can be executed.

There are several Parameter Database values that are important for the operation of the
SpeedDAC method.

Parameter
Database ID

2014

3541

3542

Parameter Name

Speed DAC output map:
node, channel

SpeedDAC mode tool tip
speed

SpeedDAC mode DAC
output value

Description

This parameter must be set to the
controller node number and the number of
the DAC to be controlled. If this parameter
is not set, the SpeedDAC method can still
be used to compute the instantaneous
speed of the robot's tool tip, but no
hardware analog output signal will be
generated. If this parameter is set, the
output value of the specified DAC channel
will be continuously written by the servo
code even when the SpeedDAC method is
not enabled. During this period, the
"SpeedDAC mode DAC output value"
(DatalD 3542) can be manually written to
output values to the DAC. The value of
DACs configured for SpeedDAC operation
should not be modified via GPL's
Signal.AlO methods.

If the SpeedDAC mode is enabled, this
parameter returns the robot's tool tip speed
in mm/sec. This is the actual tool tip speed
and is affected by the "System wide test
speed" (DatalD 601).

If the SpeedDAC mode is enabled, this
parameter returns the value that is written
to the DAC and will range from 32767 to -
32768. If the SpeedDAC mode is disable
but the DAC is configured via the "Speed
DAC output map: node, channel" (DatalD
2014), the servos control the value of the
DAC and this DatalD can be written to
explicitly set the DAC value.

This mode will remain in effect until one of the following occurs:

1. A Move.StartSpeedDAC method is executed with a zero n_segments
parameter.
2. The Move.StopSpecialModes method is executed to terminate all special
control modes for the robot.
3. A hardware error or hard E-stop or soft E-stop occurs.
4. A RapidDecel is issued.

Move Class

5. The robot is detached by the user program either by issuing a detach command
or by halting user program execution for any reason.

Examples

Dim profl As New Profile

Dim locl As New Location

Dim speeds(2), dacs(2) As Double
Robot.Attached = 1

speeds(0) = 30

dacs(0) = 1*32768/10

speeds(1l) = 300

dacs(1l) = 5*32768/10

Move .StartSpeedDAC(0, 1, speeds, dacs)
profl._Straight = True
locl.Xyz(10,20,-30,0,180,20)
Move.Loc(locl, profl)

Move .WaitForEOM

Move.StartSpeedDAC(0,0)
Robot.Attached = 0

See Also

Move Class | Move.StopSpecialModes

Get control of robot #1
At 30 mm/sec

output 1 VDC
At 300 mm/sec

output 5 VDC
Start SpeedDAC output
Must be Cartesian motion
Define position to move to

Move to locl using profl

Terminate mode
Release control of robot

Robot.CartMode

263

Move Class

Move.StartTorqueCntrl Method

Initiates execution of torque control mode for one or more motors.
Move.StartTorqueCntrl (motor_mask, adc_mask, torques_array)

Prerequisites

e High power to the robot must be enabled.
e The robot does not need to be homed.
e The robot must be Attached by the thread.

Parameters
motor_mask

A required numeric expression that evaluates to a bit mask that specifies
the motors to be placed into torque control mode. The least significant bit
corresponds to the first motor for the attached robot.

adc_mask

A required numeric expression that evaluates to a bit mask that specifies
the single motor whose torque is to be directly controlled by the first ADC
input channel. This value should be zero if no motor is to be ADC
controlled. A scaled ADC reading of +1.0 or —1.0 will drive the
corresponding motor at its full positive or negative rated motor torque.
Since the peak motor torque can usually be higher than the rated torque,
ADC values greater than +- 1.0 are permitted.

torques_array

A required array of Doubles that contains a torque specification for each
motor of the robot. The first array element (0) corresponds to the torque
value for the robot’s first motor. Array elements for motors that are not
torque controlled are ignored. Each array element is interpreted as a
percentage, where a value of +100 or —100 indicates that the torque
output should be equivalent to the full positive or negative rated motor
torque. Since the peak motor torque can usually be higher than the rated
torque, values greater than +- 100% are permitted.

Remarks

This method places the specified motors into torque control. Motors that are not placed
into torque control mode continue to operate in position control mode and can be moved
by the standard Move Class Methods. Thus, some axes of the robot can continue to

264

Move Class

follow a position-controlled path while others can exert a force or can move freely if their
torque output is set to zero.

If a motor is specified in the adc_mask, that motor’s torque output level is the sum of the
percentage of rated motor torque specified in the torques_array and the value defined by
the ADC input.

When this method is executed, it first waits for any in-process motions to be completed. It
then transitions the specified motors into torque control and sets their initial torque levels
to the values specified in the torques_array. The torque levels can subsequently be
changed by executing a Move.SetTorques method or by a change in the ADC signal.

Since torque control does not close the position loop around a motor, the torque applied
is unaffected by the current setting of the "System Test Speed". This is the speed value
that can be set via the web Operator Control Panel or the "System wide test speed in %"
(DatalD 601) database parameter.

The specified motors will remain in torque control mode until one of the following occurs:

1. The Move.StopSpecialModes method is executed to terminate torque control
mode for all motors.

2. A hardware error or hard E-stop or soft E-stop occurs.

3. A RapidDecel is issued.

4. The robot is detached by the user program either by issuing a detach command
or by halting user program execution for any reason.

Torgue control mode is compatible with both position and velocity control modes.
However, torque control mode can only be initiated when in position control mode.

Examples
Dim torques(12) As Double * All Double torques will be O
Dim ii, jj As Integer
Robot._Attached = 1 " Get control of robot #1

Move.StartTorqueCntri(1, 0, torques) " Set motor 1 to torque mode
For jj = 1 To 10
For ii = 0 To 100

Controller._Sleeptick() " Wait till next trajectory cycle
torques(0) = 1i/10 " New torque value
Move .SetTorques(torques) " Ramp torque from 0% to 10%
Next ii
Next jj
Move .StopSpecialModes " Terminate torque mode
Robot.Attached = 0 " Release control of robot

See Also

Move Class | Move.SetTorques | Move.StopSpecialModes

265

Move Class

Move.StartVelocityCntrl Method

Switches all axes of a robot from position to velocity control mode.

Move.StartVelocityCntrl (mode, adc_mask, speeds_array, profile_1)

Prerequisites

Parameters

mode

High power to the robot must be enabled.
The robot must be homed.
The robot must be Attached by the thread.

A required numeric expression that evaluates to the mode of velocity
control to be executed. Currently, this parameter is unused and should
be set to O for compatibility with future software releases.

adc_mask

A required numeric expression that evaluates to a bit mask that specifies
the single axis whose speed is to be directly controlled by the first ADC
input channel. This value should be zero if no axis is to be ADC
controlled. A scaled ADC reading of +1.0 or —1.0 will drive the
corresponding axis at its full 100% speed.

speeds_array

A required array of Doubles that contains a speed specification for each
axis of the robot. The first array element (0) corresponds to the target
speed for the robot’s first axis. One value must be provided for each axis
of the robot. Each array element is interpreted in units of mm/sec (linear
axes) or deg/sec (rotary axes). These values are limited by the
maximum permitted joint speeds, "100% joint speeds" (DatalD 2700) *
"Max %speed allowed" (DatalD 2704).

profile_1

266

A required Profile Object or an expression that evaluates to a Profile
Object value. This value defines the acceleration, deceleration and
acceleration/deceleration ramp times to be use to change the speed of
each axes. In certain cases, it may not be possible to honor the ramp
times without over-shooting the target velocity, but the acceleration and
deceleration limits are adhered to. For example, this can occur if an axis

Move Class

is accelerating to a high velocity and suddenly a new, lower velocity
target is specified.

Remarks

This method switches all of the axes of a robot from the standard position controlled
mode to velocity controlled mode. When in velocity controlled mode, each axis accepts a
target speed as its command rather than a position. The target speeds can be set by this
method or can be updated at any time using the Move.SetSpeeds method. Once each
axis has accelerated, it will continue to rotate at its target speed until the speed is
explicitly changed, velocity control mode is terminated or an error occurs.

As with position control mode, velocity control mode is compatible with torque control
mode. That is, when in velocity control mode, one or more motors can be in torque
control mode. (Note: Motors must be placed into torque control mode when the robot is in
position control mode. After motors are placed into torque control, the position-controlled
joints can then be switched to velocity control mode.)

If an axis is specified in the adc_mask, that axis' target speed is the sum of the
appropriate value in the speeds_array plus the value defined by the ADC input.

When this method is executed, it first waits for any in-process position controlled motions
to be completed. It then transitions all axes into velocity control mode and sets the initial
target speeds to the values specified in the speeds_array. The speed targets can
subsequently be changed by executing a Move.SetSpeeds method or by a change in the
ADC signal.

As a convenience in debugging applications, the velocity control target speed is affected
by the current setting of the "System Test Speed". This is the speed value that can be
set via the web Operator Control Panel or the "System wide test speed in %" (DatalD
601) database parameter. In addition, software and hardware limit stop checking is still
performed during this mode of operation. If an axis is to be rotated continuously, motors
can be configured for continuous turn capability assuming that this capability is supported
by the robot's kinematic module.

The robot will remain in velocity control mode until one of the following occurs:

1. The Move.StopSpecialModes method is executed to terminate velocity control
mode.

2. A hardware error or hard E-stop or soft E-stop occurs.

3. A RapidDecel is issued.

4. The robot is detached by the user program either by issuing a detach command
or by halting user program execution for any reason.

Examples
Dim speeds(12) As Double * All Double speeds will be O
Dim pfl As New Profile " Use default accel/decel
Dim ii As Integer
Robot._Attached = 1 " Get control of robot #1

Move.StartVelocityCntri1 (0, O, speeds, pfl) " Set to velocity control mode
For ii = 36 To 360 Step 36

speeds(0) = ii " New speed value

Move . SetSpeeds(speeds) " Ramp axis 1 speed

Controller.Sleeptick(30) " Wait a little while
Next ii

267

Move Class

Move .StopSpecialModes " Terminate velocity mode
Robot._Attached = 0 " Release control of robot
See Also

Move Class | Move.SetSpeeds | Move.StopSpecialModes | Move.StartTorgueCntrl

268

Move Class

Move.StopSpecialModes Method

Terminates execution of any active special trajectory control modes.
Move.StopSpecialModes

Prerequisites

e High power to the robot must be enabled.
e The robot must be Attached by the thread.

Parameters
None
Remarks

If any special trajectory modes are in effect, this method executes the equivalent of a
Robot.RapidDecel to immediately decelerate any moving axes of the attached robot to a
stop. At the completion of this operation, all special trajectory generation modes will be
terminated and the robot will be in the standard position control mode. If no special
modes are in effect, this method performs no operation and does not signal an error.

In particular, the following modes of execution will be terminated:

External trajectory control mode

Jog (manual) control mode
Master/slave mode

Real-time trajectory modification mode
Torque control mode

Velocity control mode

Examples
Move.StopSpecialModes " Halts any special control modes in effect
See Also

Move Class | Move.StartJogMode | Move.StartRealTimeMod | Move.StartTorqueCntrl
Move.StartVelocityCntrl | Robot.Rapid.Decel

269

Move Class

Move.Trigger Method

Primes the system to automatically assert a digital output signal or a thread event at a
prescribed trigger position during the next or current motion. Up to two independent
triggers can be set for a given motion.

Move.Trigger (mode, trigger_pt, channel)
Or
Move.Trigger (mode, trigger_pt, thread_object, event_mask)

Prerequisites

e High power to the robot must be enabled.
e The robot must be Selected or Attached by the thread.

Parameters

mode
A required arithmetic expression that defines the manner in which the
trigger position is defined.

trigger_pt
A required arithmetic expression that defines the trigger position. The
interpretation of this value is a function of the mode.

channel

(Digital Output Trigger Only) A required arithmetic expression that
specifies the digital I/O channel whose output is set at the trigger

point. If the channel number is positive, the output is turned ON at the
trigger point. If the channel number is negative, the output is turned OFF
at the trigger point. If the value is 0, any previous Move.Trigger
operation is disabled.

thread_object

(Thread Event Trigger Only) A required Thread Object that defines the
user thread whose event will be set at the trigger point.

event_mask

(Thread Event Trigger Only) A required numeric expression that
specifies the events to be set at the trigger point. Each bit in event_mask
corresponds to a different event. Bit 0 (mask value &H0001) corresponds

270

Move Class

to event 1. Multiple events may be specified. The maximum event is 16,
so the maximum value for event_mask is &HFFFF.

Remarks

After this instruction is executed, the digital output signal or thread event defined by the
parameters will be asserted when the next or current motion reaches a specified trigger
position. The trigger position is defined by the mode and the trigger_pt values as
described in the following table:

mode trigger_pt Resulting Trigger Point

0 % (0-100) % of change in pos_ition of the_ m(_)tion measured fr(_)m
the start of the motion, e.g. 0 indicates start of motion.

1 % (0-100) % of change in po_sition of thg m_otion measured f_rom
the end of the motion, e.g. 0 indicates end of motion.

2 mm Dist_ance in millimeters from the_ start of the _
motion. Only valid for straight-line and arc motions.

mm Distance in millimeters before the end of the

motion. Only valid for straight-line and arc motions.

4 seconds Time after the start of the motion.

5 seconds Time before the end of the motion.
IApplies to the currently executing motion instead of the
next motion. For example, a mode of 102 is the same

100+n as mode 2 except that the trigger is with respect to the
currently executing motion instead of the next motion.
Defines the second trigger for the specified motion
1000+m instead of the first. For example, a mode of 1102 is the

same as mode 102 except that the second trigger of the
currently executing motion is primed instead of the first.

For example, if the mode is "1" and the trigger_pt is "10", if the next motion is joint
interpolated, the channel signal will be asserted by the first trigger when the joints are
90% of the way to their final values. Alternately, the same result could be achieved with a
mode of "1001". In this case, the second trigger will be utilized. The two triggers per
motion are completely independent and identical in their performance.

For modes 4 & 5, the trigger point is computed assuming that the system is operating
with the System Speed (as set via the Operator Control Panel) at a value of 100%. If the
System Speed is set to 50%, the motion time is doubled and the effective trigger point
time is doubled as well. To set the time value to be independent of the System Speed,
the trigger_pt value should be adjusted by the value of the "System wide test speed in %"
(DatalD 601).

If the next motion is blended with the subsequent motion and a mode is selected that is
relative to the end of the next motion, the trigger point will be relative to the end of the
blending period. Since the start and end of the blending period are a function of both the
next and the subsequent motions, the trigger point will vary as a function of both
motions. Likewise, if the next motion is blended with the previous motion, trigger points
defined relative to the start of the next motion will vary as a function of the motion
blending.

If you desire to trigger a signal when the robot reaches the end point of a motion, but that
motion is blended with the subsequent motion, it is possible to trigger at approximately

271

Move Class

the correct position without regard to the details of the blending algorithms. Specifically,
if you wish to trigger when the robot reaches position Pn, create two intermediate
positions that are equidistance before and after Pn (Pn minus a small delta and Pn plus a
small delta). Then rather than moving to Pn, move to Pn minus the delta and then Pn
plus the delta. If you set the trigger to occur 50% of the way through the motion between
these two intermediate positions, the signal will trigger when the robot is approximately at
Pn.

Speed Motion from
A Ph-A to Pn+A
» Time
/‘ Pn-A Pn Ph+A
Start of blended End of blended
motion motion

If a motion terminates in the standard manner, the digital output signal or thread event is
guaranteed to be asserted at some point during the motion. However, if an error or
RapidDecel function prematurely terminates a maotion, the trigger may not be asserted.

Examples

Public Sub MAIN
Dim Evt_Thd As New Thread(*'Bckgnd_thread™)
Dim pfl As New Profile " Use default accel/decel
Evt_Thd.Start Start background thread
Robot.Attached = 1 Get control of robot #1
Signal .DI0O(20001) = O Turn off signal
Move.Trigger(0, 20, 20001) Turn on 20% into motion
Move.Trigger(1001, 10, Evt_Thd, &H10)*" Trigger event 90% into motion
Move.Rel (Location.XYZValue(10), pfl) Move 10 mm in tool coordinates
Robot.Attached = 0 Release control of robot

See Also

272

End Sub
Public Sub Bckgnd_thread()
Thread.WaitEvent(&H10, -1) " Wait for trigger
Signal .DIO(20001) = O " Turn off signal
Console.WriteLine(""Thread triggered™)
End Sub
Move Class

Move Class

Move.WaitForEOM Method

Suspends execution of the current thread until the robot completes its current motion.
Move.WaitForEOM

Prerequisites

e High power to the robot must be enabled.
e The robot must be Attached by the thread.

Parameters
None
Remarks

This allows a program that is controlling a robot (i.e. Attached to) to synchronizing its
execution with the robot by suspending execution of the thread until any current robot
motion has been completed. This method is valid for waiting until the completion of both
position and velocity controlled motions.

Examples

Dim profl As New Profile
Move.Loc(locl, profl)
Move.WaitForEOM

Create new profile set to default values
Move to global locl

Execution suspended until robot at locl
Execution continues here after robot stops

See Also

Move Class | Move.Approach | Move.Loc | Move.OneAxis | Move.Rel

273

Networking Classes

Networking Classes Summary

The following pages provide detailed information on the properties and methods for the

various classes that implement Ethernet networking communications.

The networking classes include: a IPEndPoint Class for specifying IP and port
addresses; a Socket Class that is the basis for most networking 1/O operations and
contains the basic send and receive methods; a TcpListener Class that is used for

implementing TCP server applications; a TcpClient Class for implementing TCP client
applications; and finally a UdpClient Class for implementing both the server and client

side of UDP based communications.

The tables below briefly summarize the properties and methods for each Class, which
are described in greater detail in the following sections.

IPEndPoint Member Type Description
. Constructor [Creates an Endpoint and allows the IP
New IPEndPoint Method Address and Port to be specified.
. . . Sets or gets the IP Address of an
ipendpoint_obj.IPAddress |Property Endpoint.
ipendpoint_obj.Port Property [Sets or gets the Port of an Endpoint.
Socket Member Type Description
Socket obj.Available Property Getg the numberl of data bytes currently
available to receive from a Socket.
Sets or gets the blocking mode for a
socket obj.Blocking Property |Socket. If True, the Socket blocks. If
False, it does not block.
Socket obj.Close Method Closes any connections associated with a
Socket.
Socket obj.Connect Method Requests a TCP Client connection with a
remote TCP Server.
Sets or gets the flag that controls whether
. : a keep-alive message is automatically
socket obj.KeepAlive Property transmitted over the current TCP
connection.
Socket obi.Receive Method Rece|ve_s a datagram from an open TCP
connection.
socket obi.ReceiveFrom Method Rece|ve_s a datagram from an open UDP
connection.
socket obj.ReceiveTimeout [Property S?tfs or gets the receive timeout, in
milliseconds, for a Socket.

274

Networking Classes

socket_obj.RemoteEndPoint|Property Ge_ts information about_the remote end
point of a TCP connection.
Socket obi.Send Method Sends a datagram on an open TCP
connection.
. . Sets or gets the send timeout, in
socket obj.SendTimeout Property milliseconds, for a Socket.
socket obj.SendTo Method Sends a datagram to an open UDP
connection.
TcpClient Member Type Description
: Constructor [Creates an Object for a TCP Client and
New TcpClient . .
Method optionally requests a connection.
icpclient obj.Client Method Returns_the embedded Socket for
performing 1/0.
kcpclient obj.Close Method Closes a Client Socket and breaks any
connection.
TcpListener Member Type Description

New TcpListener

Method

Constructor|Creates an Object for a TCP Server to

listen for connections.

tcplistener obj.AcceptSocket/Method

IAccepts a connection and returns a new
Socket Object for use by the TCP
Server.

Stops listening and closes the listener

tcplistener_obj.Close Method Socket.
True if there is a pending connection and

tcplistener_obj.Pending Property |AcceptSocket will succeed. Otherwise
False.

tcplistener obj.Start Method Starts listening for connection requests.

. . Stops listening and closes the listener
feplistener_obj.Stop Method Socket. Same as Close method.
UdpClient Member Type Description
New UdpClient Constructor Creates an Object for I/O using UDP.
Method

udpclient obj.Client Method Returns_the embedded Socket for
performing 1/O.

udpclient obj.Close Method Closes a Socket.

275

Networking Classes

New IPEndPoint Constructor

Constructor for creating an IP endpoint object and optionally initializing it.

New IPEndPoint (IP_address, port_number)

Prerequisites
None

Parameters
IP_address

An optional string containing a standard IP address in the form
“nnn.nnn.nnn.nnn”. This address identifies a computer or computer-
based device on the network. If omitted, or empty, the IP address is
assumed to be a “wild card”, matching any address.

port_number

An optional number specifying the port number, from 0 to 65536 of a
process, protocol, or connection. If omitted, the port number is assigned
automatically.

Remarks

The combination of IP address and port uniquely specifies a computer and process on a
network. When messages are exchanged, both the sender and the receiver have an
endpoint address consisting of these two items.

Examples

Dim ep As New IPEndPoint(''192.168.0.2", 1234) " Port 1234 at address 192.168.0.2
Dim ep As New IPEndPoint(*""", 69) " Port 69 at any address

See Also

Networking Classes | ipendpoint object.IPAddress | ipendpoint object.Port

276

Networking Classes

ipendpoint_object.IPAddress Property

Sets or gets the IP address associated with an IPEndPoint object.

ipendpoint_object.IPAddress = <ip_address_string>
firp-)endpoint_object.lPAddress
Prerequisites
None
Parameters
None
Remarks

The IP Address identifies a computer or computer-based device on the network. If empty,
the IP address is assumed to be a “wild card”, matching any address.

This property converts the IP Address part of an IPEndPoint Object to or from a string
value. The string value contains the address in the form nnn.nnn.nnn.nnn where each
nnn field is a decimal number representing 8 bits of the 32-bit IP address.

Examples

Dim ep As New IPEndPoint()
ep.IPAddress = "192.168.0.2" " Assign the IP Address to the endpoint
Console.Writeline(ep.l1PAddress) = Display the IP Address of the endpoint

See Also

Networking Classes | NewlPEndPoint | ipendpoint _object.Port

277

Networking Classes

ipendpoint_object.Port Property

Sets or gets the port number associated with an IPEndPoint Object.

ipendpoint_object.Port= <port_number>
Or
...ijpendpoint_object.Port

Prerequisites
None

Parameters
None

Remarks

The port number specifies a process, protocol, or connection at an endpoint. This number
may range from 0 to 65536.

This property sets or gets the port number of an IPEndPoint Object.

Examples

Dim ep As New IPEndPoint()
ep.Port = 1234 " Set the port of an endpoint object
Console._Writeline(ep-Port) * Display the port of the endpoint

See Also

Networking Classes | NewlPEndPoint | ipendpoint object.IPAddress

278

Networking Classes

socket_object.Available Property

Gets the number of data bytes currently available to receive from a Socket.
...socket_object.Available

Prerequisites

The Socket must be open and ready to receive data.
Parameters

None
Remarks

This property returns the number of bytes available on an open Socket. If this number is
greater than zero, a Receive or ReceiveFrom method may be called to read data.
Throws an Exception if the Socket is not open or an error occurs.

This method may be used to poll for data to read. A better solution is to set the
ReceiveTimeout property for the Socket.

Examples

While ts_Available = 0 " Test if anything to receive
Thread.Sleep(1000) " Wait 1 second

End While

ts.Receive(recv, 1500) " Receive the data

See Also

Networking Classes | socket object.Blocking | socket object.ReceiveTimeout

279

Networking Classes

socket_object.Blocking Property

Gets or sets the blocking I1/0O mode for a Socket.

socket_object.Blocking = <boolean_value>

Or

...socket_object.Blocking

Prerequisites

The Socket must be open in order to set this flag.

Parameters

None

Remarks

This property sets or gets the state of the blocking mode for a Socket. If the Socket is in
blocking mode, calls to receive data wait until data is available, and calls to send data
wait if the output queue is full. If the Socket is not in blocking mode, calls to send or
receive data throw an Exception if they would have to wait.

By default Sockets are created in blocking mode.

Non-blocking mode may be used to poll for data to read by repeatedly issuing receive
requests and handling the Exception. A better solution is to use the Available property
or to set the ReceiveTimeout or SendTimeout property for the Socket.

Examples

ts.Blocking = 0

While ts_Available = 0
Thread.Sleep(1000)

End While

ts.Receive(recv, 1500)

See Also

Set to non-blocking mode
Test if anything to receive
Wait 1 second

Receive the data

Networking Classes | socket object.ReceiveTimeout | socket object.SendTimeout

280

Networking Classes

socket_object.Close Method

Closes the network connection associated with a Socket, TcpListener, TcpClient, or
UdpClient Object.

socket_object.Close
Or
tcplistener_object.Close
Or
tcpclient_object.Close
-Or-
udpclient_object.Close

Prerequisites
None

Parameters
None

Remarks

The Close method may be used to close the network connection and free up resources.
If it is called with a TcpListener, TcpClient, or UdpClient Object, the underlying Socket
is actually closed.

If the Socket is not currently open, no error occurs.

Examples

Dim tl As New TcpListener(ep)
Dim sock As Socket

tl.Close
sock.Close

See Also

Networking Classes

281

Networking Classes

socket_object.Connect Method

Initiates a TCP client connection with a remote TCP server.
socket_object.Connect (remote_endpoint)

Prerequisites

The Socket Object must have been created by a tcpclient_object.Client method with the
endpoint parameter omitted.

Parameters
remote_endpoint

A required IPEndPoint Object that specifies the IP address and port
number of the remote endpoint to which you wish to connect.

Remarks

This method is only called when the remote endpoint of a connection was not specified in
the constructor for the initial TcpClient Object from which the Socket was obtained.

Examples

Dim tc As New TcpClient() " Optional endpoint not specified
Dim sock As Socket

Dim ep As New IPEndPoint(''192.168.0.3", 1234)

sock = tc.Client

sock.Connect(ep)

See Also

Networking Classes | New TcpClient Constructor

282

Networking Classes

socket_object.KeepAlive Property

Sets or gets the Boolean flag that controls whether a keep-alive message is
automatically transmitted over the current TCP connection.

socket_object.KeepAlive = <boolean_value>
Or
...socket_object.KeepAlive

Prerequisites

The Socket must currently be open to set this property.
Parameters

None
Remarks

This property sets, clears or returns the keep-alive flag for the current TCP connection.
When set, the local network node sends a special keep-alive packet periodically on the
TCP connection whenever it is idle for a period of time. This message permits the system
to detect if the network connection is broken (e.g. the network cable is unplugged) even if
the associated GPL thread has not recently communicated using the connection.

If this flag is not set, an idle TCP connection does not send any messages. If the network
path is broken, the local node will not detect the broken connection until it attempts to
send a message.

Using the keep-alive feature eliminates the need to implement “heartbeat” messages
within your application to detect broken connections. Also, since the keep-alive message
is only sent when the connection is idle, it does not increase traffic on a busy connection.

The keep-alive timing for GPL is pre-set as described below and cannot be changed.

1. If the connection is idle, a keep-alive packet is sent every 14 seconds.

2. If noresponse is received, additional keep-alive packets are sent every 2
seconds.

3. If noresponse is received after 9 successive keep-alive packets (a total of 32
seconds) the connection is closed locally.

The keep-alive flag only enables the local node to detect a broken connection. If the
remote node wishes to detect a broken connection, it must also set its keep-alive flag.

Examples

283

Networking Classes

Dim tc As New TcpClient() " Optional endpoint not specified

Dim sock As Socket

Dim ep As New IPEndPoint(''192.168.0.3", 1234)

sock = tc.Client

sock.Connect(ep)

sock.KeepAlive = True " Enable keep-alive for this connection

See Also

Networking Classes

284

Networking Classes

socket_object.Receive Method

Receives a message from an open TCP connection.
...socket_object.Receive(input_buffer, max_length)

Prerequisites
An active TCP connection must exist for the Socket.

The Socket Object must have been created by the tcpclient_object.Client method or the
tcplistener_object.AcceptSocket method.

Parameters
input_buffer
A ByRef String variable where the received data is stored.
max_length
The maximum number of data bytes that are read. If more bytes are
available than this maximum, they must be read by subsequent Receive
method calls.
Remarks

If blocking is enabled, this method blocks until some data is received. There is no
guarantee that an entire datagram is received at once.

This method returns the number of bytes of data received. If the number is zero, this
indicates that the TCP connection has been broken by either the local or remote
endpoint. In this case, the program should close the Socket.

If any other network errors occur, this method throws an Exception.

Examples

Dim ep As New IPEndPoint(''192.168.0.3", 1234)
Dim tc As New TcpClient(ep)

Dim sock As Socket

Dim input As String

Dim count As Integer

sock = tc.Client

count = sock.Receive(input, 2000)

See Also

285

Networking Classes

Networking Classes | socket object.ReceiveFrom

286

Networking Classes

socket_object.ReceiveFrom Method

Receives a message from an open UDP Socket.
...socket_object.ReceiveFrom(input_buffer, max_length, remote_endpoint)

Prerequisites
The Socket Object must be open for UDP 1/O.
The Socket Object must have been created by the udpclient_object.Client method.
Parameters
input_buffer
A ByRef String variable where the received data is stored.
max_length

The maximum number of data bytes that are read. If more bytes are
available than this maximum, they are lost.

remote_endpoint

A ByRef IPEndPoint Object that receives endpoint information
identifying the remote source of the received data. The original contents
of remote_endpoint are ignored and replaced by the new information.

Remarks

If blocking is enabled, this method blocks until some data is received. The entire
datagram is transferred by this method, if the max_length value is large enough.

Because of internal limitations on datagram size, max_length values greater than 1536
are not useful.

This method returns the number of bytes of data received. If that number is zero, this
indicates that the Socket has been disconnect and should therefore be closed.

If any other network errors occur, this method throws an Exception.

Examples

Dim local_ep As New IPEndPoint(’"", 1234) ~ Receive data for port 1234.
Dim uc As New UdpClient(local_ep)

287

Networking Classes

Dim remote_ep As IPEndPoint

Dim sock As Socket

Dim input As String

Dim count As Integer

sock = uc.Client

count = sock.ReceiveFrom(input, 2000, remote_ep)
Console.Writeline(""Remote IP address: " & remote_ep.IPAddress)
Console.Writeline(""Remote Port: " & CStr(remote_ep.Port))

See Also

Networking Classes | socket object.Receive

288

Networking Classes

socket_object.ReceiveTimeout Property

Sets or Gets the timeout period, in milliseconds, for a Socket to block while waiting to
receive data.

socket_object.ReceiveTimeout = <timeout>
Or
...socket_object.ReceiveTimeout

Prerequisites

The Socket must currently be open to set this property.
Parameters

None
Remarks

This property allows you to set the timeout period for a Receive or ReceiveFrom
method. It only applies if the Socket is set to blocking. If a receive request blocks waiting
for data, it will only wait for the specified timeout period. If that time is exceeded, the
receive requests throws an Exception. If the timeout period is set to 0, the timeout is
disabled and a request may block indefinitely.

Examples

ts.ReceiveTimeout = 30000 " Timeout in 30 seconds
ts.Receive(recv, 1500) " Receive the data

See Also

Networking Classes | socket object.Blocking| socket object.SendTimeout

289

Networking Classes

socket_object.RemoteEndPoint Property

Gets remote end point information for an active TCP connection.

...socket_object.RemoteEndPoint

Prerequisites

None

Parameters

None

Remarks

This property returns information about the opened end point for a TCP/IP connection.
This information is especially useful after a listener accepts a connection. The returned
object is of class IPEndPoint. The IPAddress and Port properties of the returned object
contain information about the IP Address and Port of the remote client. If there is no
active connection, the returned IPEndPoint object contains IPAddress "0.0.0.0" and Port
0.

Examples

Dim ep As New IPEndPoint(*""", 1234) " Listen on port 1234
Dim rem_ep As IPEndPoint

Dim tl As New TcpListener(ep) " Create listener object
Dim sock As Socket

tl_Start

sock = tl.AcceptSocket

rem_ep = sock.RemoteEndPoint

Console._Writeline(""Remote IP = " & rem_ep.l1PAddress)
Console._Writeline("'Remote port = " & CStr(rem_ep.Port))
See Also

290

Networking Classes | tcplistener _object.AcceptSocket | IPEndPoint Class

Networking Classes

socket_object.Send Method

Sends a message to an open TCP connection.
...socket_object.Send(output_buffer, max_length)

Prerequisites
An active TCP connection must exist for the Socket.

The Socket Object must have been created by the tcpclient_object.Client method or the
tcplistener_object.AcceptSocket method.

Parameters
output_buffer
The String value that is sent.
max_length

An optional value indicating the maximum number of data bytes to send.
If omitted or zero, the entire output_buffer string is sent.

Remarks
If blocking is enabled, this method blocks if the output queue is full.

This method returns the number of bytes of data actually sent. If in blocking mode, the
returned value is always equal to the number of bytes requested. In non-blocking mode,
the value may be less than the number of bytes requested. In that case, you should re-
issue the Send to output the remainder of the bytes.

If any network errors occur, this method throws an Exception.

Examples

Dim ep As New IPEndPoint(''192.168.0.3", 1234)
Dim tc As New TcpClient(ep)

Dim sock As Socket

Dim output As String

Dim count As Integer

sock = tc.Client

count = sock.Send(output)

See Also

201

Networking Classes

Networking Classes | socket object.SendTo

292

Networking Classes

socket_object.SendTimeout Property

Sets or Gets the timeout period, in milliseconds, for a Socket to block while waiting to
send data.

socket_object.SendTimeout = <timeout>
Or
...socket_object.SendTimeout
Prerequisites
None
Parameters

None

Remarks

The property allows you to set the timeout period for a Send or SendTo method. It only
applies if the Socket is set to blocking. If a send request blocks waiting for the output
gueue, it will only wait for the specified timeout period. If that time is exceeded, the send
request throws an Exception. If the timeout period is set to 0, the timeout is disabled and
a send may block indefinitely.

Examples

ts.SendTimeout = 30000 " Timeout in 30 seconds
ts.Send(trns, 1500) " Send the data

See Also

Networking Classes | socket object.Blocking| socket object.ReceiveTimeout

293

Networking Classes

socket_object.SendTo Method

Sends a message using an open UDP Socket.
...socket_object.SendTo(output_buffer, max_length, remote_endpoint)

Prerequisites
The Socket Object must be open for UDP 1/O.
The Socket Object must have been created by the udpclient_object.Client method.
Parameters
output_buffer
The String value that is sent.
max_length

An optional value indicating the maximum number of data bytes to send.
If omitted or zero, the entire output_buffer string is sent.

remote_endpoint

An IPEndPoint Object that contains endpoint information identifying the
remote destination for the data sent.

Remarks
If blocking is enabled, this method blocks if the output queue is full.

This method returns the number of bytes of data actually sent. If that number is less than
the number requested, you should re-issue the SendTo to output the remainder of the
bytes.

If any network errors occur, this method throws an Exception.

Examples

Dim uc As New UdpClient()

Dim remote_ep As New IPEndPoint(''192.168.0.5")
Dim sock As Socket

Dim output As String

Dim count As Integer

sock = uc.Client

count = sock.SendTo(output, O, remote_ep)

294

Networking Classes

count = sock.ReceiveFrom(input, 2000, remote_ep) " Get new remote endpoint

count = sock.SendTo(output, O, remote_ep) " Reply to previous sender
See Also

Networking Classes | socket object.Send

295

Networking Classes

New TcpClient Constructor

Constructor for creating a TcpClient Object and optionally connecting to a remote TCP
server.

New TcpClient (endpoint)

Prerequisites

None
Parameters
endpoint
An optional IPEndPoint Object that contains the IP address and port
identifying the remote endpoint of a TCP server. If omitted, a Connect
method must be called later for the TCP client Socket before I/O can be
performed.
Remarks

This constructor creates a new TcpClient Object and creates the underlying Socket. If
the optional endpoint parameter is specified, a connect request is sent immediately to the
remote server. If it is omitted, a Connect method must be called for the TCP client
Socket before 1/0 can be performed.

Examples
Dim ep As New IPEndPoint(''192.168.0.2", 1234) " Port 1234 at address 192.168.0.2
Dim tc As New TcpClient(ep) " Connect to remote endpoint
Dim tc As New TcpClient() " Create socket but do not connect
See Also

Networking Classes | socket object.Connect

296

Networking Classes

tcpclient_object.Client Method

Returns the Socket Object associated with a TcpClient Object.
...tcpclient_object.Client

Prerequisites
None

Parameters
None

Remarks

Since all /O is performed on Sockets, this method allows the Socket associated with a
TcpClient object to be accessed.

Examples

Dim tc As New TcpClient(ep)
Dim sock As Socket
sock = tc.Client

See Also

Networking Classes | udpclient object.Client

297

Networking Classes

tcpclient_object.Close Method

Closes the network connection associated with a Socket, TcpListener, TcpClient, or
UdpClient Object.

socket_object.Close
Or
tcplistener_object.Close
Or
tcpclient_object.Close
-Or-
udpclient_object.Close

Prerequisites
None

Parameters
None

Remarks

The Close method may be used to close the network connection and free up resources.
If it is called with a TcpListener, TcpClient, or UdpClient Object, the underlying Socket
is actually closed.

If the Socket is not currently open, no error occurs.

Examples

Dim tl As New TcpListener(ep)
Dim sock As Socket

tl.Close
sock.Close

See Also

Networking Classes

298

Networking Classes

New TcpListener Constructor

Constructor for creating a TcpListener Object that allows a TCP server to be created.
New TcpListener (endpoint)

Prerequisites

None
Parameters
endpoint
An IPEndPoint Object that contains the IP address and port identifying
the local endpoint for connections accepted by this TCP server. The IP
address of this endpoint is ignored since GPL controllers only have a
single IP address. The port number determines the port on which the
server listens.
Remarks

This constructor creates a new TcpListener Object and creates the underlying Socket.
It does not actually begin listening for connections until the Start method is called. These
Objects are the basis for implementing TCP servers.

Examples

Dim ep As New IPEndPoint(*""", 1234) " Listen on port 1234
Dim tl As New TcpListener(ep) " Create listener object

See Also

Networking Classes | tcplistener _object.Start

299

Networking Classes

tcplistener_object.AcceptSocket Method

Accepts a TCP connection and returns a new Socket Object for performing 1/0 on that
connection.

...tcplistener_object.AcceptSocket

Prerequisites

The TCP listener associated with the tcplistener_object should have already been
started.

Parameters
None
Remarks

This method is used by a TCP server to accept a connection request from a remote TCP
client. It creates a new Socket for performing 1/O with that client. If no connection
requests are pending, this method blocks until one is received. To avoid blocking, use the
Pending property before calling AcceptSocket.

If any network errors occur, this method throws an Exception.

Examples

Dim ep As New IPEndPoint(*""", 1234) " Listen on port 1234
Dim tl As New TcpListener(ep) " Create listener object
Dim sock As Socket

tl._Start

sock = tl.AcceptSocket

See Also

Networking Classes | tcplistener object.Pending

300

Networking Classes

tcplistener_object.Close Method

Closes the network connection associated with a Socket, TcpListener, TcpClient, or
UdpClient Object.

socket_object.Close
Or
tcplistener_object.Close
Or
tcpclient_object.Close
-Or-
udpclient_object.Close

Prerequisites
None

Parameters
None

Remarks

The Close method may be used to close the network connection and free up resources.
If it is called with a TcpListener, TcpClient, or UdpClient Object, the underlying Socket
is actually closed.

If the Socket is not currently open, no error occurs.

Examples

Dim tl As New TcpListener(ep)
Dim sock As Socket

tl.Close
sock.Close

See Also

Networking Classes

301

Networking Classes

tcplistener_object.Pending Property

Gets a Boolean value that indicates if there are any TCP connection requests pending.

...tcplistener_object.Pending

Prerequisites

The TCP listener associated with the tcplistener_object must have already been started.

Parameters

None

Remarks

This property is used by a TCP server to test if there are any pending connection
requests for a TcpListener Object. If so, it returns True. Otherwise it returns False. If
there is a pending request, call the AcceptSocket method to accept it.

If any network errors occur, this property returns False.

Examples

Dim tl As New TcpListener(ep) " Create listener object
Dim sock As Socket
tl_Start
IT tl.Pending Then
sock = tl.AcceptSocket
End If

See Also

302

Networking Classes | tcplistener _object.AcceptSocket

Networking Classes

tcplistener_object.Start Method

Start listening for TCP connection requests.
tcplistener_object.Start

Prerequisites
None

Parameters
None

Remarks

This method is used by TCP servers to start listening for connection requests from
remote TCP clients. You can test if any requests are received by using the Pending
property. After a request is received, it is accepted by calling the AcceptSocket method.
After you accept a connection request, you can call the Stop method to cease accepting
any further connection requests if you wish. Executing the Stop method does not effect
your ability to continue to service datagrams for connections that have already been
established.

If any network errors occur, this method throws an Exception.

Examples

Dim tl As New TcpListener(ep) " Create listener object
Dim sock As Socket

tl._Start

sock = tl.AcceptSocket

See Also

Networking Classes | tcplistener _object.AcceptSocket

303

Networking Classes

tcplistener_object.Stop Method

Stop listening for TCP connection requests.
tcplistener_object.Stop

Prerequisites
None

Parameters
None

Remarks

This method is used by TCP servers when they are done listening for connection
requests from remote TCP clients. Executing this method does not effect your ability to
continue to service datagrams for connections that have already been established.

No error occurs if the listener is not active.

Examples
Dim tl As New TcpListener(ep) " Create listener object
Dim sock As Socket
tl_Start
sock = tl.AcceptSocket
tl.Stop
See Also

Networking Classes | tcplistener object.Start

304

Networking Classes

New UdpClient Constructor

Constructor for creating a UdpClient Object.
New UdpClient (endpoint)

Prerequisites

None
Parameters
endpoint
An optional IPEndPoint Object that contains the IP address and port
identifying the local endpoint for datagrams recognized by this UDP
Socket. The IP address of this endpoint is ignored since GPL controllers
only have a single IP address. If the port is non-zero, only datagrams to
the specified port can be received.
Remarks

This constructor creates a new UdpClient Object and creates the underlying Socket. No
network 1/O is generated by this method.

Examples

Dim ep As New IPEndPoint("""", 1234) * Port 1234
Dim uc As New UdpClient(ep) " Create a socket for UDP communications

See Also

Networking Classes | udpclient object.Client

305

Networking Classes

udpclient_object.Client Method

Returns the Socket Object associated with a UdpClient Object.
...udpclient_object.Client

Prerequisites
None

Parameters
None

Remarks

Since all /O is performed on Sockets, this method allows the Socket associated with a
UdpClient Object to be accessed.

Examples

Dim tc As New UdpClient(ep)
Dim sock As Socket
sock = tc.Client

See Also

Networking Classes | tcpclient _object.Client

306

Networking Classes

udpclient_object.Close Method

Closes the network connection associated with a Socket, TcpListener, TcpClient, or
UdpClient Object.

socket_object.Close
Or
tcplistener_object.Close
Or
tcpclient_object.Close
-Or-
udpclient_object.Close

Prerequisites
None

Parameters
None

Remarks

The Close method may be used to close the network connection and free up resources.
If it is called with a TcpListener, TcpClient, or UdpClient Object, the underlying Socket
is actually closed.

If the Socket is not currently open, no error occurs.

Examples

Dim tl As New TcpListener(ep)
Dim sock As Socket

tl.Close
sock.Close

See Also

Networking Classes

307

Profile Class

Profile Class Summary

The following pages provide detailed information on the properties and methods of the
Profile Class. This class defines the attributes of objects that are used to specify the
performance parameters for a typical motion. That is, a Profile Object contains speed,
acceleration, deceleration, in range criteria and other specifications that dictate how a
motion is to be performed. The basic motion instruction, Move.Loc, takes as its two
arguments a Profile Object and a Location Object. The Location Object specifies the
destination for the robot motion and the Profile Object specifies how the robot is to get to
the destination.

As is standard in GPL, conversions between different arithmetic types, e.g. Boolean,
Integer, Single, Double, are automatically performed as required. So, for numeric
properties and methods of the Profile Class, it is not necessary to have different
variations of these members to deal with the different possible mixes of input parameter
data types. Also, as appropriate, the properties and methods generally produce results
that are formatted as Double’s. These results will automatically be converted to smaller
data types as necessary, e.g. Double -> Integer, and will not generate an error so long
as numeric overflow does not occur.

The table below briefly summarizes the properties and methods that are described in
greater detail in the following sections.

Member Type Description
Sets and gets peak motion speed
profile_obj.Speed Property specified as a percentage of the nominal
speed.

Sets and gets the secondary peak motion
speed specification as a percentage of
their nominal speeds for selected axes
during Cartesian motions.

Sets and gets peak motion acceleration
profile_obj.Accel Property specified as a percentage of the nominal
acceleration.

Sets and gets peak motion deceleration
profile_obj.Decel Property specified as a percentage of the nominal
deceleration.

Sets and gets duration for ramping up to

profile_obj.Speed?2 Property

profile_obj.AccelRamp [Property the peak acceleration, specified in
seconds.
Sets and gets duration for ramping up to
profile_obj.DecelRamp [Property the peak deceleration, specified in
seconds.

308

Profile Class

Sets and gets Boolean indicating if the
robot is to follow a straight-line path.

Sets and gets constraint that specifies if
the robot should be stopped at the end of
profile_obj.InRange Property the motion and when the robot is close
enough to the final destination to be
considered at its final position.

Sets and gets a String value not used by

profile_obj.Straight Property

profile_obj.Text Property GPL. Available for general use by
applications.

orofile obi.Clone Method Met_hod that returns a copy of the
profile obj.

309

Profile Class

profile_object.Accel Property

Sets and gets the peak motion acceleration defined as the percentage of the nominal
acceleration.

profile_object.Accel = <new_value>
0 r
...profile_object.Accel

Prerequisites

Takes effect when the profile_object is passed as a parameter to a Move Class method
and the specified motion segment is generated.

Parameters

None

Remarks

When generating a motion segment, the Accel property defines the peak acceleration
that the motion can achieve. An Accel value of 100 corresponds to the nominal (100%)
acceleration for the specified type of motion. The Accel value can range from 1.0 upto a
maximum value permitted for the robot. For a Straight-line motion, the acceleration is
computed along the path and about the Cartesian rotational angles defined by the robot’s
kinematic module. For joint motions, the acceleration percentage is applied to the joint
angles.

The acceleration that the robot actually achieves for a given motion may be different than
the Accel value for a number of reasons: if an AccelRamp (s-curve profile) value is
specified, the motion may not be long enough to ramp up to the specified acceleration;
the Accel value may be limited by the maximum permitted Accel value; or the Accel
value may be automatically scaled if the Parameter Database “Couple %accel/%decel to
%speed” parameter is set. The Parameter DB value is a convenience feature that
automatically scales the specified Accel and Decel values with the Speed so that slow
motions have gentler accelerations and decelerations and fast motions accelerate and
decelerate as quickly as possible.

When a New Profile is created, its properties are automatically set to the default values
specified in the controller’s Configuration Database. Therefore, the Accel parameter only
needs to be set if you wish to deviate from the default value.

Examples
Dim profl As New Profile " Create new profile set to default values
profl_Accel = 50 " Only accelerate at 50% of nominal rate
Move.Loc (locl, profl) " Perform motion to previously defined

310

* location, locl with performance “profl”

Profile Class

See Also

Profile Class | profile_object.AccelRamp | profile_object.Decel | profile_object.DecelRamp

311

Profile Class

profile_object.AccelRamp Property

Sets and gets the duration for ramping up to the peak acceleration, specified in seconds.

profile_object.AccelRamp = <new_value>
0 r
...profile_object.AccelRamp

Prerequisites

Takes effect when the profile_object is passed as a parameter to a Move Class method
and the specified motion segment is generated.

Parameters
None
Remarks

When generating a motion segment, the AccelRamp property specifies how long, in
seconds, its takes for the Accel to achieve its specified value. Likewise, this time is also
used for ramping the Accel down to zero. If the AccelRamp time is set to zero, at the
start of a motion, the Accel command instantaneously jumps up to its specified value and
then, at the end of acceleration period, instantaneously drops down to zero. A zero
AccelRamp time corresponds to a square wave acceleration curve and commands an
infinite jerk, i.e. rate of change of the acceleration. A non-zero AccelRamp time produces
a trapezoidal acceleration curve, which is often referred to as an s-curve profile.

S-curve acceleration and deceleration profiles limit the impact of starting and stopping
motions and help to reduce the excitation of resonances (or ringing) in the robot
structure. An s-curve profile can often reduce the settling time at the end of the motion
since each axes more smoothly glides into its final position with less oscillations. On the
other hand, an s-curve profile will lengthen the planned duration of a motion since the
average acceleration and deceleration will be less than a square wave profile. So, while
most robots will benefit from s-curve profiles, for low accelerations or for very stiff robots,
a square wave acceleration profile may be more beneficial.

The actual acceleration ramp time for a given motion may be different than the
AccelRamp value for a number of reasons: if the motion is short, there may not be
sufficient time to ramp all of the way up to the Accel value; or the AccelRamp value may
be automatically scaled by with the Accel value if the Parameter Database “Couple
%accel/%decel to %speed” parameter is set. The Parameter DB value is a convenience
feature that automatically scales the specified AccelRamp and Accel values with the
Speed so that slow motions have gentler accelerations with shorter ramp times and fast
motions accelerate more quickly but have longer ramp times.

312

Profile Class

When a New Profile is created, its properties are automatically set to the default values
specified in the controller's Configuration Database. Therefore, the AccelRamp
parameter only needs to be set if you wish to deviate from the default value.

Examples

Dim profl As New Profile " Create new profile set to default values
profl_Accel = 50 Only accelerate at 50% of nominal rate
profl_AccelRamp = 0.1 Take 0.1 sec to achieve 50% nominal accel
Move.Loc (locl, profl) Perform motion to previously defined
location, locl with performance “profl”

See Also

Profile Class | profile object.Accel | profile object.Decel | profile object.DecelRamp

313

Profile Class

profile_object.Clone Method

Method that returns a copy of the profile_object.
...profile_object.Clone

Prerequisites
None
Parameters
None
Remarks
For objects, if a program contains a simple assignment statement:
object_1 = object_2

the result is that object_1 points to the same data as object 2. Any subsequent change of
a property in either object_1 or object_2 affects the data associated with both objects.

If you wish to make an independent copy of an object, the Clone method is the standard
means for performing this operation:

object_1 = object_2.Clone
Examples

Dim profl As New Profile
Dim prof2 As Profile
profl._Decel = 25

prof2 = profl.Clone
prof2_Accel = 50

Create new profile set to default values
Create new profile with no data allocated
Only decelerate at 25% of nominal rate
Makes a copy of profl data

Doesn’t affect profl data

See Also

Profile Class

314

Profile Class

profile_object.Decel Property

Sets and gets the peak motion deceleration defined as the percentage of the nominal
deceleration.

profile_object.Decel = <new_value>
Or
...profile_object.Decel

Prerequisites

Takes effect when the profile_object is passed as a parameter to a Move Class method
and the specified motion segment is generated.

Parameters
None
Remarks

When generating a motion segment, the Decel property defines the peak deceleration
that the motion can achieve. An Decel value of 100 corresponds to the nominal (100%)
deceleration for the specified type of motion. The Decel value can range from 1.0 up to a
maximum value permitted for the robot. For a Straight-line motion, the Deceleration is
computed along the path and about the Cartesian rotational angles defined by the robot's
kinematic module. For joint motions, the deceleration percentage is applied to the joint
angles.

The deceleration that the robot actually achieves for a given motion may be different than
the Decel value for a number of reasons: if an DecelRamp (s-curve profile) value is
specified, the motion may not be long enough to ramp up to the specified deceleration;
the Decel value may be limited by the maximum permitted Decel value; or the Decel
value may be automatically scaled if the Parameter Database “Couple %accel/%decel to
%speed” parameter is set. The Parameter DB value is a convenience feature that
automatically scales the specified Accel and Decel values with the Speed so that slow
motions have gentler accelerations and decelerations and fast motions accelerate and
decelerate as quickly as possible.

When a New Profile is created, its properties are automatically set to the default values
specified in the controller’s Configuration Database. Therefore, the Decel parameter only
needs to be set if you wish to deviate from the default value.

Examples

Dim profl As New Profile
profl._Decel = 25
Move.Loc (locl, profl)

Create new profile set to default values
Only decelerate at 25% of nominal rate
Perform motion to previously defined
location, locl with performance “profl”

315

Profile Class

See Also

Profile Class | profile_object.Accel | profile_object.AccelRamp | profile_object.DecelRamp

316

Profile Class

profile_object.DecelRamp Property

Sets and gets the duration for ramping up to the peak deceleration, specified in seconds.

profile_object.DecelRamp = <new_value>
Or
...profile_object.DecelRamp

Prerequisites

Takes effect when the profile_object is passed as a parameter to a Move Class method
and the specified motion segment is generated.

Parameters
None
Remarks

When generating a motion segment, the DecelRamp property specifies how long, in
seconds, its takes for the Decel to achieve its specified value. Likewise, this time is also
used for ramping the Decel down to zero. If the DecelRamp time is set to zero, at the
start of the motion deceleration period, the Decel command instantaneously jumps up to
its specified value and then, at the end of the motion, instantaneously drops down to
zero. A zero DecelRamp time corresponds to a square wave deceleration curve and
commands an infinite jerk, i.e. rate of change of the deceleration. A non-zero DecelRamp
time produces a trapezoidal deceleration curve, which is often referred to as an s-curve
profile.

S-curve acceleration and deceleration profiles limit the impact of starting and stopping
motions and help to reduce the excitation of resonances (or ringing) in the robot
structure. An s-curve profile can often reduce the settling time at the end of the motion
since each axes more smoothly glides into its final position with less oscillations. On the
other hand, an s-curve profile will lengthen the planned duration of a motion since the
average acceleration and deceleration will be less than a square wave profile. So, while
most robots will benefit from s-curve profiles, for low decelerations or for very stiff robots,
a square wave deceleration profile may be more beneficial.

The actual deceleration ramp time for a given motion may be different than the
DecelRamp value for a number of reasons: if the motion is short, there may not be
sufficient time to ramp all of the way up to the Decel value; or the DecelRamp value may
be automatically scaled by with the Decel value if the Parameter Database “Couple
%accel/%decel to %speed” parameter is set. The Parameter DB value is a convenience
feature that automatically scales the specified DecelRamp and Decel values with the
Speed so that slow motions have gentler decelerations with shorter ramp times and fast
motions decelerate more quickly but have longer ramp times.

317

Profile Class

When a New Profile is created, its properties are automatically set to the default values
specified in the controller's Configuration Database. Therefore, the DecelRamp
parameter only needs to be set if you wish to deviate from the default value.

Examples

Dim profl As New Profile " Create new profile set to default values
profl._Decel = 25 " Only decelerate at 25% of nominal rate
profl._DecelRamp = 0.1 " Take 0.1 sec to achieve 50% nominal decel
Move.Loc (locl, profl) " Perform motion to previously defined

* location, locl with performance “profl”

See Also

Profile Class | profile object.Accel | profile object.AccelRamp| profile object.Decel

318

Profile Class

profile_object.InRange Property

Gets and sets the constraint that specifies if the robot should be stopped at the end of the
motion and when the robot is close enough to the final destination to be considered at its
final position.

profile_object.InRange = <new_value>
Or
...profile_object.InRange

Prerequisites

Takes effect when the profile_object is passed as a parameter to a Move Class method
and the specified motion segment is generated.

Parameters
None
Remarks

Whenever the robot picks up a part or places it at its final destination, the robot should
normally be brought to a complete stop and any small position errors should be
eliminated (nulled) before the part is grasped or released. Conversely, if the robot is
moving through intermediate (via) positions simply to clear obstacles, bringing the robot
to a stop at these positions increases the cycle time without providing any benefit. Also,
when the robot is to be brought to a stop, there are instances where it is beneficial to
spend more time reducing the final positioning errors to the tightest possible position
constraint for the robot and other times when a looser constraint is acceptable to save
cycle time.

The InRange property specifies if the robot is to stop at the end of motion and, if so, how
tight a position error constraint should be applied to determine when the robot has
reached its final destination. The value of this property is interpreted as follows:

InRange Interpretation
Value
<0 Don’t stop the robot at the end of the motion. Blend with the next
motion if possible.
0 Stop the robot at the end of the motion, but do not apply any

position error constraints. This means that as soon as the final set
point command has been issued to the servos, GPL will signal
that the motion has been completed.

Small number >0{Stop the robot at the end of the motion, but use a very small
(loose) position error constraint. This will ensure that the robot has

319

Profile Class

approximately reached the specified destination before GPL
considers that the motion has been completed.

100

Large number <=|Stop the robot at the end of the motion and apply a stringent

position error constraint. If this value is 100, the robot will have to
be within its tightest error envelope before GPL considers the
motion completed. Values greater than 100 can be specified, but
these require smaller error tolerances than are recommended by
the manufacturer of the robot.

When a New Profil

e is created, its properties are automatically set to reasonable default

values. Normally, the InRange property defaults to 100. Therefore, the InRange
parameter only needs to be altered if this default value is not appropriate.

Examples

Dim profl As New P
profl.InRange = 10

rofile Create new profile set to default values

Stop at EOM, reduced requirement for inrange

Move.Loc (locl, profl) " Perform motion to previously defined

See Also

Profile Class

320

location, locl

Profile Class

profile_object.Speed Property

Sets and gets the peak motion speed specified as a percentage of the nominal speed.

profile_object.Speed = <new_value>
Or
...profile_object.Speed

Prerequisites

Takes effect when the profile_object is passed as a parameter to a Move Class method
and the specified motion segment is generated.

Parameters
None
Remarks

When generating a motion segment, the Speed property defines the peak speed that the
motion can achieve. A Speed value of 100 corresponds to the nominal (100%) speed for
the specified type of motion. The Speed value can range from 1.0 up to a maximum
value permitted for the robot. For a Straight-line motion, the speed is computed along
the path and about the Cartesian rotational angles defined by the robot’s kinematic
module. For joint motions, the speed percentage is applied to the joint angles.

While 100% is normally the maximum operating speed recommended by the robot
manufacturer, there are times that a greater Speed setting may be beneficial. Often, the
100% Speed setting is established for when the robot is carrying its maximum payload.
Also, 100% Speed may be the sustained maximum speed setting, but higher burst
speeds may be permitted.

The speed that the robot actually achieves for a given motion may be different than the
specified Speed value for a number of reasons: the motion may not be long enough to
ramp up to the specified speed given the available acceleration; the Speed value may be
limited by the maximum permitted Speed value; or the operator may have set a slow
“Test Speed” that scales down the specified Speed value.

When a New Profile is created, its properties are automatically set to the default values
specified in the controller's Configuration Database. Therefore, the Speed parameter
only needs to be set if you wish to deviate from the default value.

Examples

Dim profl As New Profile " Create new profile set to default values
profl._Speed = 50 " Only go at half of the rated speed

321

Profile Class

Move.Loc (locl, profl) " Perform motion to previously defined
® location, locl with performance “profl”

See Also

Profile Class | profile_object.Accel | profile_object.Decel | profile_object.Speed2

322

Profile Class

profile_object.Speed2 Property

Sets and gets the secondary peak motion speed specification as a percentage of their
nominal speeds for selected axes during Cartesian motions.

profile_object.Speed2 = <new_value>
Or
...profile_object.Speed?2

Prerequisites

Takes effect when the profile_object is passed as a parameter to a Move Class method
and the specified Cartesian motion segment is generated.

Parameters
None
Remarks

For all joint interpolated and the majority of Cartesian motions, the standard Speed
property is used to control the peak speed of the robot. However, for certain robot
geometries and certain Cartesian (straight-line) motions, it is beneficial to have a
secondary property to control motion speeds.

The Speed?2 property only applies to Cartesian motions and is generally used to specify a
secondary speed setting to control the peak rotation speed for a motion. If Speed?2 is
zero, both the peak translation and rotation are governed by the Speed property. If
Speed? is non-zero, the peak Cartesian translation motion speed is limited by the Speed
property and the peak Cartesian rotation speed is limited by Speed2. For a such a
motion, the speed value that is more limiting will govern the overall motion timing.

For most motions, Speed2 should be set to 0. However, if your robot has a wrist that can
rotate very quickly and it is unpredictable as to whether the motion will be primarily a
translation or a rotation, Speed?2 can be set low to limit the speed of a large rotation
without negatively impacting motions that are primarily translations.

For some special kinematic modules, Speed2 may also be applied to other degrees-of-
freedom. Please see the Kinematic Library for specific information on these special uses.

Examples

Dim profl As New Profile " Create new profile set to default values
profl._Straight = True
profl._Speed2 = 25
profl._Speed = 100
Move.Loc (locl, profl)

Limit Cartesian rotation speed

Keep translation speed at full

Perform motion to previously defined
location, locl with performance “profl”

323

Profile Class

See Also

Profile Class | profile_object.Accel | profile_object.Decel | profile _object.Speed

324

Profile Class

profile_object.Straight Property

Sets and gets Boolean indicating if the robot’s tool tip is to follow a straight-line path or if
the path will be a function of the robot’s geometry.

profile_object.Straight = <new_value>
Or
...profile_object.Straight

Prerequisites

Takes effect when the profile_object is passed as a parameter to a Move Class method
and the specified motion segment is generated.

Parameters
None
Remarks

For certain motions, the path of the robot’s tool or the part being held by the robot is
important and moving along a straight line is desirable. In other cases, the path may not
be important. In the latter case, the robot may move faster if the path is defined by
interpolating between the joint angles of the initial and final Locations.

If the Straight property is True, by making use of the system’s built-in knowledge of the
robot’s geometry (i.e. kinematics), the robot’s tool tip is moved along a straight-line path
in Cartesian space. If Straight is False, the system will interpolate in joint angles to move
the robot to its destination.

If the robot is a simple 1, 2, or 3 degree-of-freedom Cartesian mechanism with all linear
axes, there is no difference between straight-line and joint interpolated motions.
However, if the Cartesian robot has a rotary theta axis or if the robot is a non-Cartesian
mechanism with rotary or parallel axes, the two motion types are quite different.

In situations where the path is not important, joint interpolated motions requires less
processor time and the robot will often move more quickly.

By default, when a New Profile is created, Straight is set to False.

Examples
Dim profl As New Profile " Create new profile set to default values
profl._Straight = True
Move.Loc (locl, profl) " Perform motion to previously defined

* location, locl by moving along a straight path

325

Profile Class

See Also

Profile Class

326

Profile Class

profile_object.Text Property

Sets and gets a String associated with a Profile Object. This field is not used by GPL
and is provided for use by application programs.

profile_object.Text = <string_value>
Or
...profile_object. Text

Prerequisites
None

Parameters
None

Remarks

This Text property allows an application programmer to associate an arbitrary String
value with a Profile object. For example, this can be used to document how the object
is employed or to store a description of the object that is subsequently displayed when
the object is accessed or written.

Examples

Dim profl As New Profile " Create new Profile object
profl.Text = "This is my profile"”
Console.WriteLine(profl.Text)

See Also

Profile Class | location object.Text | refframe _object.Text

327

Reference Frame Class

RefFrame Class Summary

The following pages provide detailed information on the properties and methods of the
reference frame class, RefFrame. If one or more Location Objects are defined with
respect to a RefFrame Object, when the position and/or orientation of the reference
frame are altered, the position and orientation of all associated Location Objects are
automatically adjusted as well.

RefFrame Objects are very useful when picking up or placing several parts that are at
fixed positions relative to a base plate or when accessing pallets that have parts arranged
in a rectangular grid or when the robot is to operate on a conveyor belt. The assembly of
a printed circuit board is a common example of the first situation. When a PCB enters into
a machine for mounting electronic components, the position and orientation of the PCB is
first accurately determined, typically using a vision system. The reference frame that
represents the PCB is then updated and all of the positions and orientations of the
components to be placed are automatically adjusted. The use of robots in the laboratory
automation industry provides a good example of the use of pallet reference frames. In
this case, samples to be tested are placed on a tray and arranged in a rectangular grid
pattern. After the tray is located and its associated reference frame updated, the
RefFrame Class provides a simple means for stepping from sample to sample. Finally,
conveyor reference frames are utilized to implement the GPL conveyor tracking
capability. This feature allows locations to be specified relative to a moving conveyor
line. This capability is important in the packaging industry where parts are often
transported on conveyors.

To allow different types of static and dynamic reference frames to be represented, the
RefFrame Object includes a Type property. At present, only basic, pallet and conveyor
reference frames are supported. In the future, additional types of reference frames may
be added.

In general, each type of reference frame only makes use of a subset of the properties
and methods of the RefFrame Class. The tables below summarize the properties and
methods utilized for each type of reference frame.

Basic Reference Frame
Member Type Description
refframe_obj.Type Property Set to O to indicate a basic reference frame.
Loc.Pos is set equal to the position and
refframe_obj.Loc Property orientation of the reference frame by a GPL
procedure.
Returns the absolute (“total”) position and
refframe_obj.Pos Method orientation for any type of reference frame
object.

328

Reference Frame Class

refframe

obj.PosWrtRef

Method

Returns the position for any type of
reference frame while ignoring any further
reference frames.

refframe

obj.Text

Property

Sets and gets a String value not used by
GPL. Available for general use by

applications.

Pallet Reference Frame

Member

Type

Description

refframe

obj.Type

Property

Set to 1 to indicate a pallet reference
frame.

refframe

obj.Loc

Property

Loc.X, Y and Z define the position of the
first row, column and layer. The
orientation of the X, Y, and Z axes of Loc

and layer respectively.

define the direction for each row, column,

refframe

obj.Pos

Method

Returns the absolute (“total”) position
and orientation for any type of reference
frame object.

refframe

obj.PosWrtRef

Method

Returns the position for any type of
reference frame while ignoring any
further reference frames.

refframe

obj.Text

Property

GPL. Available for general use by
applications.

Sets and gets a String value not used by

refframe

obj.Palletindex

Property

Sets and gets the index for the next
position along the pallet row, column, or
layer (1 to n).

refframe

obj.PalletMaxIndex

Property

Sets and gets the maximum position
index along the pallet row, column, or
layer (1 to n).

refframe

obj.PalletNextPos

Method

IAdvances to the next pallet position.

refframe

obj.PalletOrder

Property

Sets and gets the parameter that
specifies the order in which
PlalletNextPos indexes along the row,
column, and layer indices.

refframe

obj.PalletPitch

Property

along each row, column, or layer.

Sets and gets the step size for advancing

refframe

obj.PalletRowColLay

Method

Sets the next pallet position row, column,
and layer indices in a single instruction.

Conveyor Reference Frame

Member Type Description
refframe obi.Type Property fSet to 2 to indicate a conveyor reference
rame.
Not used. Conveyor reference frames
refframe_obj.Loc Property [cannot be defined with respect to any
other reference frame.

329

Reference Frame Class

330

refframe

obj.Pos

Method

Returns the absolute (“total”) position and
orientation for any type of reference
frame object.

refframe

obj.PosWrtRef

Method

Returns the position of the "nominal”
transformation for the associated
conveyor robot.

refframe

obj.Text

Property

Sets and gets a String value not used by
GPL. Available for general use by
applications.

refframe

obj.ConveyorOffset

Property

Sets or gets the property that specifies
the zero position of the conveyor belt's
encoder.

refframe

obj.ConveyorRobot

Property

Sets or gets the property that specifies
the robot module that is interfaced to the
belt encoder and contains the data that

defines the conveyor.

Reference Frame Class

refframe_object.ConveyorOffset Property

For a conveyor reference frame, sets or gets the property that specifies the zero position
of the conveyor belt's encoder.

refframe_object.ConveyorOffset= <encoder_offset>
Or
... refframe_object.ConveyorOffset

Prerequisites

e The refframe_object must be a conveyor reference frame.
e The Conveyor Tracking software license must be installed on the controller.

Parameters
None

Remarks

Since the raw reading of a conveyor’s encoder can increase almost without limit, an
offset to the encoder reading is provided to effectively zero the encoder value. This
permits a motion program to be taught in one region of the conveyor and then reused in
another region of the conveyor as the belt continues to advance. Whenever the belt
encoder's value is read, the ConveyorOffset is automatically subtracted from the
encoder's instantaneous reading.

When the encoder is zero'ed by setting the ConveyorOffset equal to the encoder's
current reading, the position and orientation of the belt will be equal to the "Nominal"
value defined in the conveyor's robot module (DatalD 16060).

The ConveyorOffset is specified in units of millimeters.
If the conveyor encoder has rollover enabled, the system will automatically internally

adjust the ConveyorOffset to ensure that its value is within one rollover value of the
instantaneous encoder reading.

Examples

Dim beltl As New RefFrame
Dim locl As New Location

beltl.Type = 2 " Conveyor reference frame
beltl.ConveyorRobot = 2 " 2nd robot is conveyor
beltl._ConveyorOffset = Robot.WhereAngles(2).Angle(1)
locl.RefFrame = beltl " Zero encoder

locl.Here " Test current robot loc

IT (locl.ConveyorLimit(0) <> 0) Then
Console.WriteLine(''Out of range')
End If

331

Reference Frame Class

See Also

RefFrame Class | location_object.ConveyorLimit | refframe_object.ConveyorRobot

332

Reference Frame Class

refframe_object.ConveyorRobot Property

For a conveyor reference frame, sets or gets the property that specifies the robot module
that is interfaced to the belt encoder and contains the data that defines the conveyor.

refframe_object.ConveyorRobot= <robot_number>
Or
... refframe_object.ConveyorRobot

Prerequisites

e The refframe_object must be a conveyor reference frame.
e The Conveyor Tracking software license must be installed on the controller.

Parameters
None

Remarks

Most of the information that a conveyor reference frame computes is derived from the
data specified by a conveyor robot. A conveyor robot module defines the interface that is
connected to the belt encoder and contains its "nominal” transformation. The nominal
transformation defines the direction of travel of the belt and its approximate center

point. Since a controller can be interfaced to multiple conveyor belts, the
ConveyorRobot property provides the means for associating a reference frame with a
particular conveyor belt.

This property must be set before the position of a conveyor reference frame can be
accessed.

The robot_number can range for 1 to N, where N is the total number of robots that are
configured in a controller.

Examples

Dim beltl As New RefFrame
Dim locl As New Location

beltl.Type = 2 " Conveyor reference frame
beltl.ConveyorRobot = 2 " 2nd robot is conveyor
beltl.ConveyorOffset = Robot.WhereAngles(2).Angle(1)
locl.RefFrame = beltl " Zero encoder

locl.Here " Test current robot loc

If (locl.ConveyorLimit(0) <> 0) Then
Console.WriteLine(''Out of range™)
End If

See Also

333

Reference Frame Class

RefFrame Class | location_object.ConveyorLimit | refframe_object.ConveyorOffset

334

Reference Frame Class

refframe_object.Loc Property

Sets and gets a reference frame’s Location Object, which typically contains the nominal
position and orientation of the frame.

refframe_object.Loc = <Cartesian_location_object>
Or
... refframe_object.Loc

Prerequisites
None

Parameters
None

Remarks

Most reference frame types have an associated Cartesian Location Object that is
pointed to by the Loc property. Typically, the nominal position and orientation of the
reference frame is stored in this Location although the specific interpretation of this data
is a function of the reference frame type.

The refframe_object.Loc.RefFrame property points to the next reference frame if
refframe_object is itself relative to another frame. For conveyor reference frames, Loc is
unused and Loc.RefFrame must always be null since conveyor reference frames cannot
be relative to another reference frame of any type.

The following table describes how to interpret the position and orientation data stored in
the Cartesian Location Object pointed to by refframe_object.Loc.

RefFrame refframe_object.Loc Contents
Type

Contains the reference frame position and orientation. So,
refframe_object.Loc.Pos represents the total position of
refframe_object and refframe_object.Loc.PosWrtRef is the
position and orientation of refframe_object with respect to any
subsequent reference frames. If a program wishes to change the
position and orientation of a basic frame, it must do so via
refframe_object.Loc. However, if a program wishes to read the
reference frame position and orientation, it is normally a better
practice to use the refframe_object.Pos and
refframe_object.PosWrtRef methods. These last two methods will
return the current total and relative position for any type of
reference frame.

Basic

335

Reference Frame Class

Pallet

The XYZ position of the refframe_object.Loc defines the position
of row 1, column 1, and layer 1 of the pallet. The orientation of
refframe_object.Loc defines the direction of the rows, columns,
and layers of the pallet. The X-axis of refframe_object.Loc defines
the index direction for a row. The Y-axis defines the index
direction for a column. The Z-axis defines the index direction for
layers.

Conveyor

The Loc property is not used for conveyor reference frames. The
'nominal” position for a conveyor reference frame is dynamically
extracted from the value stored in the associated conveyor robot
module. This permits the direction of travel and nominal position
of a conveyor to be taught once, automatically loaded when the
controller is restarted, and referenced by multiple conveyor
reference frames. The Loc.PosWrtRef must always be NULL
since conveyor reference frames cannot be relative to any other
reference frame. The refframe_object.Pos and
refframe_object.PosWrtRef methods should be used to access
the instantaneous and nominal positions of a conveyor reference

frame.

As a convenience, when a new reference frame object is created, a Cartesian Location
Object is automatically created and linked to the reference frame. By default, this
Location will have its position and orientation angles set to zero.

Examples
Dim refl As New RefFrame " Also allocates Loc
Dim locl As New Location
refl.Loc.XYZ(100,90,-80,0,0,45) " Define base frame
locl._RefFrame = refl * Define locl wrt refl
locl.Xyz(10,0,0,0,180,0) * Define locl poswrtref
Console._Writeline(locl.Pos.X) * Displays 107.07
Console.Writeline(locl.Pos.Y) " Displays 97.07

Console.Writeline(locl.Pos.Z)

See Also

336

Displays -80

RefFrame Class | refframe object.Pos| refframe_object.PosWrtRef

Reference Frame Class

refframe_object.Palletindex Property

For a pallet reference frame, sets or gets the row, column or layer index for the next grid
position to be accessed.

refframe_object.Palletindex(row_col_lay) = <next_index>
Or
... refframe_object.Palletindex(row_col_lay)

Prerequisites

The refframe_object must be a pallet reference frame.

Parameters
row_col_lay
A required numerical expression that is equal to 1 if the row index is to
be accessed, 2 if the column index is to be accessed, or 3 if the layer
index is to be accessed.
Remarks

This property permits a program to set or get the next row, column, or layer index to be
accessed in a pallet reference frame. Each index can range from 1 to the maximum value
for that dimension as specified by the object’s PalletMaxIndex property. The row,
column, and layer indices are always positive integer numbers. If you wish to step in a
negative direction, the appropriate PalletPitch property for the refframe_object can be
set to a negative number.

If you wish to set all 3 index values at once, you can make use of the object’s
PalletRowColLay method. If you want to just advance to the next logical pallet position,
the PalletNextPos method can be invoked.

By default, when a new pallet reference frame is created, the pallet indices are set to 1,
1,1

Examples

Dim refl As New RefFrame " Also allocates Loc
Dim locl As New Location

refl.Type = 1
refl._Loc.XYZ(100,50,-80,0,0,0)
refl_PalletPitch(l) = 10
refl._PalletPitch(2) = 20 Spacing along column
refl_PalletMaxIndex(1l) = 3 Define grid size
refl_PalletMaxIndex(2) = 3 Define grid size

Change to pallet frame
Define pallet base
Spacing along row

337

Reference Frame Class

locl.RefFrame = refl locl.PosWrtRef all 0’s

refl_Palletindex(2) = 2 " Set grid (1,2,1)
Console.Writeline(locl.Pos.X) " Displays 100
Console.Writeline(locl.Pos.Y) " Displays 70

See Also

RefFrame Class | refframe_object.PalletMaxIndex | refframe_object.PalletNextPos|
refframe_object.PalletRowColLay

338

Reference Frame Class

refframe_object.PalletMaxIndex Property

For a pallet reference frame, sets or gets the number of rows, columns, or layers in the

pallet.

refframe_object.PalletMaxIndex(row_col_lay) = <maximum_index>

Or

... refframe_object.PalletMaxIndex(row_col_lay)

Prerequisites

The refframe_object must be a pallet reference frame.

A required numerical expression that is equal to 1 if the number of rows
is to be accessed, 2 if the number of columns is to be accessed, or 3 if

Parameters
row_col_lay
the number of layers is to be accessed.
Remarks

This property allows a program to set or get the number of rows, columns or layers for a
given pallet reference frame. The number of rows, columns or layers is specified by an
integer number greater than or equal to 1.

To specify a specific pallet position, the Palletindex properties must be set to at least 1
and cannot be greater then the applicable maximum values defined by the

PalletMaxIndex property.

By default, when a new pallet reference frame is created, the maximum pallet indices are

each setto 1.

Examples

Dim refl As New RefFrame
Dim locl As New Location

refl.Type = 1
refl._Loc.XYZ(100,50,-80,0,0,0)
refl_PalletPitch(1l) = 10
refl._PalletPitch(2) = 20
refl._PalletMaxIndex(l) =

3
refl_PalletMaxIndex(2) 3

locl.RefFrame = refl
refl_PalletRowColLay(2,3,1)
Console.Writeline(locl.Pos.X)
Console.Writeline(locl.Pos.Y)

Also allocates Loc

Change to pallet frame
Define pallet base
Spacing along row
Spacing along column
Define grid size
Define grid size

locl._PosWrtRef all 0’s
Set grid position
Displays 110

Displays 90

339

Reference Frame Class

See Also

RefFrame Class | refframe_object.Palletindex| refframe_object.PalletRowColLay

340

Reference Frame Class

refframe_object.PalletNextPos Method

For a pallet reference frame, advances the pallet position to the next logical position.

refframe_object.PalletNextPos

Prerequisites

The refframe_object must be a pallet reference frame.

Parameters

None

Remarks

Given the current pallet position and the PalletOrder, this method advances the pallet to
the next logical position. For example, if the current pallet position is at the last element in
a row, 3rd column position, and 2nd layer, and the PalletOrder indicates that the pallet
should be incremented by row, column and layer, PalletNextPos will advance to the 1st
row element, 4th column element and 2nd layer.

If the initial pallet position is at the last row, column, and layer position, PalletNextPos
changes the pallet position indices to 1,1,1.

If you want to randomly select the next pallet position, a program can utilize Palletindex
or PalletRowColLay instead of the PalletNexPos method.

Examples

Dim refl As New RefFrame
Dim locl As New Location

refl.Type = 1
refl.Loc.XYZ(100,50,-80,0,0,0)
refl_PalletPitch(1l) = 10
refl_PalletPitch(2) = 20
refl_PalletMaxIndex(l) = 3
refl_PalletMaxIndex(2) = 3
refl_PalletOrder = 2

locl.RefFrame = refl
refl.PalletRowColLay(3,1,1)
refl.PalletNextPos
Console.Writeline(locl.Pos.X)
Console.Writeline(locl.Pos.Y)

See Also

Also allocates Loc

Change to pallet frame
Define pallet base
Spacing along row
Spacing along column
Define grid size
Define grid size

Col, row, layer order

locl._PosWrtRef all 0’s
Set grid position
Advance to 3,2,1
Displays 120

Displays 70

341

Reference Frame Class

RefFrame Class [refframe_object.Palletindex| refframe_object.PalletOrder |
refframe _object.PalletRowColL ay

342

Reference Frame Class

refframe_object.PalletOrder Property

For a pallet reference frame, sets or gets the parameter that specifies the order in which
the row, column, and layer indices are incremented.

refframe_object.PalletOrder = <indexing_order>
Or
... refframe_object.PalletOrder

Prerequisites

The refframe_object must be a pallet reference frame.
Parameters

None

Remarks

Normally, the rows and columns of a pallet are defined such that a layer of rows and
columns lie in the world coordinate system X-Y plane. If the rows and columns are
defined in such a manner, you may wish to increment from one pallet position to the next
in a different order than the standard row first, then column, then layer pattern. For
example, you may want to stack from the bottom layer to the top layer before
incrementing to the next row or column. The PalletOrder parameter allows a program to
define the order in which the row, column, and layer indices are incremented.

The interpretation of this parameter is presented in the following table.

PalletOrder Value Incrementing Order
0 Row, column, layer
1 Row, layer, column
2 Column, row, layer
3 Column, layer, row
4 Layer, row, column
5 Layer, column, row

By default, when a new pallet reference frame is created, the PalletOrder is setto 0
(row,column,layer).

Examples

Dim refl As New RefFrame " Also allocates Loc
Dim locl As New Location

refl.Type = 1 " Change to pallet frame

343

Reference Frame Class

refl._Loc.XYZ(100,50,-80,0,0,0)
refl.PalletPitch(l) = 10
refl.PalletPitch(2) = 20
refl_PalletMaxIndex(l) = 3 Define grid size
refl_PalletMaxIndex(2) = 3 Define grid size
refl_PalletOrder = 2 " Col, row, layer order

Define pallet base
Spacing along row
Spacing along column

locl.RefFrame = refl * locl.PosWrtRef all 0’s
refl_PalletRowColLay(3,1,1) Set grid position
refl._PalletNextPos Advance to 3,2,1
Console.Writeline(locl.Pos.X) Displays 120
Console.Writeline(locl.Pos.Y) Displays 70

See Also

RefFrame Class | refframe object.PalletNextPos

344

Reference Frame Class

refframe_object.PalletPitch Property

For a pallet reference frame, sets or gets the step size (pitch) between adjacent rows,
columns, or layers in a pallet.

refframe_object.PalletPitch(row_col_lay) = <pitch_size>
Or
... refframe_object.PalletPitch(row_col_lay)

Prerequisites

The refframe_object must be a pallet reference frame.

Parameters
row_col_lay
A required numerical expression that is equal to 1 if the row pitch is to be
accessed, 2 if the column pitch is to be accessed, or 3 if the layer pitch is
to be accessed.
Remarks

This property allows a program to set or get the step size (pitch) between sequential
rows, columns or layers for a pallet reference frame. The step sizes are in units of
millimeters and can be both positive and negative real numbers.

Examples

Dim refl As New RefFrame " Also allocates Loc
Dim locl As New Location

refl.Type = 1
refl._Loc.XYZ(100,50,-80,0,0,0)
refl_PalletPitch(l) = 10
refl._PalletPitch(2) = 20
refl_PalletMaxIndex(l) =
refl_PalletMaxIndex(2)

Change to pallet frame
Define pallet base
Spacing along row
Spacing along column
Define grid size
Define grid size

3
3

locl.RefFrame = refl
refl_PalletRowColLay(2,3,1)
Console.Writeline(locl.Pos.X)
Console.Writeline(locl.Pos.Y)

locl.PosWrtRef all 0’s
Set grid position
Displays 110

Displays 90

See Also

RefFrame Class

345

Reference Frame Class

refframe_object.PalletRowColLay Method

For a pallet reference frame, sets the row, column, and layer indices for the next grid
position to be accessed.

refframe_object.PalletRowColLay(row, column, layer)

Prerequisites

The refframe_object must be a pallet reference frame.

Parameters

row

A required numerical expression that specifies the index for the next row
to be accessed, where the row number is interpreted as an integer value
that ranges from 1 to the maximum permitted row index for this pallet, i.e.
refframe_object.PalletMaxIndex(1).

column

A required numerical expression that specifies the index for the next
column to be accessed, where the column number is interpreted as an
integer value that ranges from 1 to the maximum permitted column index
for this pallet, i.e. refframe_object.PalletMaxIndex(2).

layer

A required numerical expression that specifies the index for the next
layer to be accessed, where the layer number is interpreted as an integer
value that ranges from 1 to the maximum permitted layer index for this
pallet, i.e. refframe_object.PalletMaxIndex(3).

Remarks

This is a convenience method that allows a program to explicitly set the row, column, and
layer indices for the next pallet element to be accessed. This method permits a program
to randomly set or reset the next element. For example, if values of 1,1,1 are specified as
the arguments to this method, the first pallet position will be accessed next.

By default, when a new pallet reference frame is created, the pallet indices are set to 1,
1,1

346

Reference Frame Class

The operation performed by this method can also be accomplished by utilizing the
Palletindex property once for each of the three pallet indices or the PalletNextPos
method can be invoked to advance to the next logical pallet position.

Examples

Dim refl As New RefFrame
Dim locl As New Location

refl.Type = 1
refl._Loc.XYZ(100,50,-80,0,0,0)
refl_PalletPitch(l) = 10
refl._PalletPitch(2) = 20
refl._PalletMaxIndex(l) =

3
refl_PalletMaxIndex(2) 3

locl.RefFrame = refl
refl_PalletRowColLay(2,3,1)
Console.Writeline(locl.Pos.X)
Console.Writeline(locl.Pos.Y)

See Also

Also allocates Loc

Change to pallet frame
Define pallet base
Spacing along row
Spacing along column
Define grid size
Define grid size

locl.PosWrtRef all 0’s
Set grid position
Displays 110

Displays 90

RefFrame Class | refframe object.Palletindex| refframe object.PalletMaxIndex

refframe object.PalletNextPos

347

Reference Frame Class

refframe_object.Pos Method

Returns a Cartesian Location equal to the current total position and orientation for any
type of RefFrame Object.

... refframe_object.Pos(location_object)

Prerequisites

None

Parameters

location_object

An optional Cartesian Location Object or a method or property that
returns a Cartesian Location Object value. This parameter is not
currently utilized but is included to support planned future reference
frame types.

Remarks

For any type of reference frame object, this method returns a Cartesian Location whose
value is equal to the current (instantaneous) total position and orientation of the frame
taking into account any additional linked reference frames. In the case of a “basic”
reference frame, the current location is equal to the contents of refframe_object.Loc.Pos.
In the case of a dynamic reference frame, such as a pallet, the current total position and
orientation is computed based upon the object properties, e.g. nominal location, current
row, column and layer numbers. In the case of a conveyor reference frame, the
instantaneous position of the conveyor belt is computed and returned. For a conveyor
reference frame, the X-axis of this value points along the direction of travel for the belt.

This method returns the reference frame’s total position and orientation that is equivalent
to the value used to compute the total position and orientation of a Cartesian Location
that is defined with respect to the reference frame. For example, if a Cartesian Location,
locl, has its RefFrame pointer set equal to a reference frame, refl, then locl.Pos is
equal to:

refl.Pos(dummy).Mul(locl.PosWrtRef)

Examples

348

Dim refl As New RefFrame * Also allocates Loc
Dim dum As New Location

refl_Loc.XYZ(100,90,-80,0,0,45) * Define base frame
Console._Writeline(refl_Pos(dum).X) * Displays 100
Console.Writeline(refl.Pos(dum).Y) " Displays 90
Console.Writeline(refl.Pos(dum).Z) " Displays -80

Reference Frame Class

See Also

RefFrame Class | refframe_object.PosWrtRef

349

Reference Frame Class

refframe_object.PosWrtRef Method

Returns a Cartesian Location equal to the current position and orientation of a
RefFrame Object ignoring any further reference frames.

... refframe_object.PosWrtRef(location_object)

Prerequisites
None
Parameters
location_object

An optional Cartesian Location Object or a method or property that
returns a Cartesian Location Object value. This parameter is not
currently utilized but is included to support planned future reference
frame types.

Remarks
In general, this method returns a Cartesian Location whose value is equal to the current

position and orientation of the reference frame without taking into account any additional
linked reference frames.

RefFrame refframe_object.PosWrtRef
Type
Basic Returns the contents of refframe_object.Loc.PosWrtRef.

Returns the current pallet position and orientation based upon the

object properties, e.g. nominal location, current row, column and

layer numbers, without taking into consideration any linked
reference frames.

Returns the "Nominal" transformation for the conveyor as defined

in the associated conveyor robot (DatalD 16060). The X-axis of is

value points along the direction of travel of the belt and the XYZ
position of this value is typically defined approximately at the
center of travel for the belt. The nominal value for a conveyor is
stored in the conveyor robot module to permit this transformation
to be taught once, automatically loaded when the controller is
restarted, and referenced by multiple conveyor reference frames.

Pallet

Conveyor

Examples

Dim refl As New RefFrame " Also allocates Loc
Dim dum As New Location

350

Reference Frame Class

refl_Loc.XYZ(100,90,-80,0,0,45) " Define base frame
Console.Writeline(refl.PosWrtRef(dum).X) " Displays 100
Console.Writeline(refl._PosWrtRef(dum).Y) " Displays 90
Console.Writeline(refl._PosWrtRef(dum).Z) * Displays -80

See Also

RefFrame Class | refframe_object.Pos

351

Reference Frame Class

refframe_object.Text Property

Sets and gets a String associated with a RefFrame Object. This field is not used by
GPL and is provided for use by application programs.

refframe_object. Text = <string_value>
0 rrc_afframe_object.Text
Prerequisites
None
Parameters
None

Remarks

This Text property allows an application programmer to associate an arbitrary String
value with a RefFrame object. For example, this can be used to document how the
object is employed or to store a description of the object that is subsequently displayed
when the object is accessed or written.

Examples
Dim refl As New RefFrame " Create new RefFrame object
refl.Text = "This is my reference frame"

Console.WriteLine(refl.Text)
See Also

RefFrame Class | location _object.Text | profile _object. Text

352

Reference Frame Class

refframe_object.Type Property

Sets and gets the Integer Type of a RefFrame Object, which indicates if the object is a
basic type or one of the special types of reference frames.

refframe_object.Type = <new_Integer_value>
Or
...refframe_object. Type

Prerequisites
None

Parameters
None

Remarks

There are several different types of reference frames that can be represented by a
refframe_object. The Type property indicates which type of reference frame is stored in
a specific object. The possible values for the Type property are as follows:

Type Value Description

Basic RefFrame that stores the position and orientation of
the reference frame in the Loc Location.

Pallet RefFrame that defines a one, two or three-

1 dimensional rectangular grid of positions that are
sequentially indexed.

Conveyor RefFrame whose value is dynamically computed
and is equal to the instantaneous position of a conveyor
belt. Requires that the Conveyor Tracking Software License
be installed in the controller.

0

For all reference frames, there are a few common properties that are always defined and
accessible. These common properties include the Type, Loc, Pos and PosWrtRef. In
addition, specific types of reference frames may have additional properties and methods
that are only meaningful for a specific type of refframe_object. For example, a pallet
reference frame has a PalletOrder property that is only relevant for that type of frame.

In general, if you attempt to access a property that is not relevant for a refframe_object,
an error will be generated.

When a “New” RefFrame is created, its Type is automatically set to 0, i.e. the basic type.

Examples

353

Reference Frame Class

Dim refl As New RefFrame
Dim iType As Integer
iType = refl.Type

See Also

RefFrame Class

354

" Create new reference frame

" iType will be set to O

Robot Class

Robot Class Summary

The following pages provide detailed information on the properties and methods of the
global Robot Class. This class provides access to the features and status of each robot
configured in the system, e.g. the current position of a robot, processes for establishing
the position reference for each axes of each robot, functions for forcing an in-process
motion to decelerate to a halt, methods for setting and getting the robot's base and tool
offsets, etc.

The most important operations of the Robot Class are to associate a specific robot with
a specific thread and to grant exclusive control of a robot to a thread. Most read-only
robot operations require that a statement either explicitly specify a robot or have a
previously Selected robot. For example, to read the current position of a robot, the
Selected robot will be accessed if no robot is specified. More importantly, in order to
control or move a robot, a thread must first be Attached to a robot in order to gain
exclusive access to it.

As is standard in GPL, conversions between different arithmetic types, e.g. Integer,
Single, Double, are automatically performed as required. So, for numeric properties and
methods of the Robot Class, it is not necessary to have different variations of these
members to deal with the different possible mixes of input parameter data types. Also, as
appropriate, the properties and methods generally produce results that are formatted as
Double’s. These results will automatically be converted to smaller data types as
necessary, e.g. Double -> Integer, and will not generate an error so long as numeric
overflow does not occur.

The table below briefly summarizes the properties and methods that are described in
greater detail in the following sections.

Member Type Description
Robot Attached Property Sets and. gets the number of the robot that
is exclusively controlled by a thread.
Robot.Base Property Sets and gets the position and orientation

offset for the base of the robot.

Gets an Integer that contains flag bits that
Robot.CartMode Property indicate if any special Cartesian trajectory
modes are active.

Sets and gets elements of a parameter
Robot.Custom Property array whose interpretation is specific to
each kinematic module.

Defines internal table of motor encoder
"Linearity compensation" correction values
that are automatically applied to encoder
values.

Robot.DefLinComp Method

355

Robot Class

356

Robot.Dest

Property

Returns a Cartesian Location whose value
is equal to the originally planned final
destination of the previously executed
motion.

Robot.DestAngles

Property

Returns an Angles Location whose value
is equal to the originally planned final
destination of the previously executed
motion.

Robot.Home

Method

Homes the Attached robot to establish the
reference positions for each axes.

Robot.HomeAll

Method

Homes all robots to establish the reference
positions for each of their axes.

Robot.JointToMotor

Method

Converts an array of axis joint angles (in
degrees or millimeters) to an equivalent
array of motor positions (in encoder
counts)..

Robot.LastProfile

Property

Returns a Profile Object whose properties
are equal to those of the currently
executing motion or the last executed
motion if no motion is active.

Robot.MotorTempStatus

Property

Returns a code that indicates the
temperature status of a motor.

Robot.MotorToJoint

Method

Converts an array of motor positions (in
encoder counts) to an equivalent array of
axis joint angles (in degrees or millimeters).

Robot.Payload

Property

Asserts or retrieves the last asserted value
that specifies the mass of the payload
being carried by the robot.

Robot.RapidDecel

Property

Sets the Boolean flag that forces any in-
process motion for a robot to be rapidly
decelerated to a stop.

Robot.RealTimeModAcm

Property

Returns a Cartesian Location whose value
is equal to the accumulated modifications
generated by the Real-time Trajectory
Modification mode.

Robot.RestartBase

Property

Gets the position and orientation offset for
the base of the robot that was set when the
controller was restarted.

Robot.RestartTool

Property

Gets the position and orientation offset for
the tool or gripper of the robot that was set
when the controller was restarted.

Robot.Selected

Property

Sets and gets the default robot number to
be used when accessing a specific robot.

Robot.Source

Property

Returns a Cartesian Location whose value
is equal to the initial position and
orientation of the previously executed
motion.

Robot.SourceAngles

Property

Returns an Angles Location whose value
is equal to the initial axes positions of the
previously executed motion.

Robot.SpeedAngles

Property

Returns an Angles Location whose
components contain the instantaneous
speed of each axis.

Robot.Tool

Property

Sets and gets the position and orientation
offset for the tool or gripper of the robot.

Robot Class

Robot.TrajState

Property

Gets an Integer that indicates the current
state of the Trajectory Generator for a
given robot.

Robot.Where

Property

Gets a Cartesian Location whose value
indicates the current position and
orientation of a robot.

Robot.WhereAngles

Property

Gets an Angles Location whose value
indicates the current position of each axes

of a robot.

357

Robot Class

Robot.Attached Property

Sets and gets the number of the robot that is exclusively controlled by a thread.

Robot.Attached = <robot_number>
Or
... Robot.Attached

Prerequisites
None

Parameters
None

Remarks

In order to ensure that a robot receives a consistent set of motion commands, a robot
must be Attached before any motion commands can be issued by a thread and only a
single thread can be Attached to a robot at any given time.

While a robot is Attached by a thread, other threads are still permitted to read certain
properties of the robot, such as the current robot position and trajectory state. Also, other
threads are able to alter the robots operation in ways that make sense. For example, any
thread can disable high power, signal a Soft or Hard E-Stop, or force a robot to rapidly
decelerate.

The Attached robot number is an Integer that ranges from 1 to N. If the Attached
property is set to 0, any robot attached to the thread is released (un-Attached).

When a robot is Attached, the system forces the Selected property to be equal to the
Attached value.

Typically, if a project is intended to control a robot, the GPL software development
environment can be configured to automatically generate the statements to ensure the
robot will be Attached at the start of program execution and un-Attached when the
program is terminated or pauses execution.

Examples

Robot.Attached
Robot.Attached

" We now have exclusive control of robot #1
" This is how you give up control

or

See Also

358

Robot Class

Robot Class | Robot .Selected

359

Robot Class

Robot.Base Property

Sets and gets the position and orientation offset for the base of the robot.

Robot.Base = <Cartesian_location>
Or
... Robot.Base (robot)

Prerequisites

e For the set operation, the robot must be attached to the current thread.
e For the set operation, the Location must be of the Cartesian type.

Parameters
robot
An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is O or unspecified, the Selected robot will be
accessed.
Remarks

360

This property permits a project to either set or retrieve the Cartesian Location Object
that defines the position and orientation offset from the base of the robot to the origin of
the World coordinate system.

The Base definition is beneficial if you create an application using Cartesian Locations
and the base of the robot is subsequently shifted slightly. By adjusting the position of the
Base definition, a project can automatically correct all of the joint angle positions that will
be computed from Cartesian Locations.

For computational reasons, some robot kinematic modules may not support the Base
property. Also, as a computational efficiency, the value of Base can only contain a
positional offset in X, Y, and Z and a rotation about the Z-axis. That is, the Euler angles
for the Base must always be "X,Y,Z,0,0,Roll".

For most applications, the Base value is not used and its value is set to "0,0,0,0,0,0".

Once the Robot.Base has been set, these dimensions remain in effect until the Base
property is set again or the controller is powered down and restarted. As a convenience,
when the controller is restarted, a "Restart Base " definition is automatically put into effect
based upon the values of "Base set at restart" (DatalD 16052).

Changing the robot's Base instantaneously changes where the system thinks that the
robot's Cartesian set point is located. So, if the robot is in motion when a thread attempts

Robot Class

to set the Base, GPL automatically waits until the motion is completed before executing
this instruction.

Examples

Dim base As New Location

Robot.Attached = 1

base.XYzZ(10, 0, 0) " Move base by 10mm in X
Robot.Base = base

Console.WriteLine(Robot.Base().X) " Outputs a value of 10

See Also

Robot Class | Robot.RestartBase

361

Robot Class

Robot.CartMode Property

Returns an Integer that contains flag bits that indicate if any special Cartesian trajectory
modes are active.

...Robot.CartMode (robot)

Prerequisites

None
Parameters
robot
An optional numeric expression that specifies the robot to be accessed
(2-n). If this value is 0 or unspecified, the Selected robot will be
accessed.
Remarks

The Trajectory Generator supports a number of special operating modes that can only be
executed when Cartesian motions are being evaluated. This property returns an Integer
that contains flag bits that indicate if any of these special modes are currently active.

This is the same value that is returned in the "CartMode Trajectory Flags" (DatalD 3526)
Parameter Database entry.

The bits within the value returned by this property are defined as follows:

CartMode

Flags Description

Conveyor Tracking. If on, indicates that the robot is moving with
&HO1 respect to a conveyor belt and is automatically adjusting the
Cartesian set point to track the belt.

Real-time Trajectory Modification. If on, indicates that the
Cartesian set point can be dynamically altered based upon input
&HO02 from a GPL program. The Trajectory Generator incorporates the
real-time modifications into the computed Cartesian set point each
trajectory cycle.

SpeedDAC. If on, indicates that the Trajectory Generator is
&HO04 computing the instantaneous tool tip speed and using this
information to control the value of a analog output (DAC) device.

Examples

362

Robot Class

Dim flags As Integer
flags = Robot.CartMode() " Reads current mode bits

See Also

Robot Class | Move.StartRealTimeMod | Move.StartSpeedDAC

363

Robot Class

Robot.Custom Property

Sets and gets elements of a parameter array whose interpretation is specific to each
kinematic module.

Robot.Custom (index) = <New_value>
Or
... Robot.Custom (robot, index)

Prerequisites

e For the set operation, the robot must be attached to the current thread.

e For kinematic modules that do not use the array of custom kinematic parameters,
setting or reading these parameters has no effect on the operation of the
associated robot.

Parameters
index
An optional numeric expression that specifies the element of the custom
kinematic parameter array (1-5) that is accessed. If this value is 1 or
unspecified, the first element will be accessed.
robot
An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is O or unspecified, the Selected robot will be
accessed.
Remarks

364

Selected kinematic modules have special runtime parameters that alter their behavior in
a non-standard fashion. For example, the "Dual RPR" robot has two arms and two sets
of grippers that can be moved. At any given time, only one of the arms and one of the
grippers can be factored into the computation of the Cartesian position and orientation of
the robot. The "custom kinematic parameters" are utilized by this kinematic module at
runtime to specify which of the two arms is logically considered part of the robot.

In some instances, setting a parameter may cause the executing thread to pause waiting
for the attached robot to complete its current motion. This side effect and other similar
actions are controlled by the specific kinematic module type.

For a description of how these parameters are utilized in a specific robot and their side
effects, please consult the documentation on the Kinematic Robot Modules.

Robot Class

Examples

Robot.Attached = 1
Robot.Custom(1) = 1 " Set custom parameter value

See Also

Robot Class

365

Robot Class

Robot.DefLinComp Method

Defines internal table of motor encoder "Linearity compensation” correction values that
are automatically applied to encoder values.

Robot.DefLinComp (robot, motor, enc_start, enc_step, num_cor, cor)

Prerequisites

e Motor linear compensation must be permitted for the robot.
e Motor linear compensation must be enabled.

Parameters
robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is O or unspecified, the Selected robot will be
accessed.

motor

A required numeric expression that specifies the motor to compensate
(1-n).

enc_start

A required numeric expression that specifies the first (and lowest)
encoder count to be corrected.

enc_step

A required numeric expression that specifies the step size in encoder
counts between successive encoder correction values. Must be greater
than 0 and can be a fractional value.

num_cor

A required numeric expression that specifies the number of encoder
correction values that are defined in the cor array (1-n). The number of
values is only limited by the available system memory. Increasing the
number of correction values and decreasing the step size improves the
compensation and only effects memory, not execution time.

cor

366

Robot Class

A required array of double precision values that specifies the correction
in encoder counts at each sequential encoder position. The corrections
can include fractional encoder counts. Positive values indicate that the
encoder should be reading a higher value and negative numbers indicate
the encoder reading should be lower.

Remarks

This method creates and defines an internal table of encoder correction values for the
specified motor of a robot. These corrections are automatically applied to each motor
command and to each encoder reading. This technique permits repeatable position
errors to be corrected to yield more linear and accurate axis positioning. In between
correction values, the corrections are interpolated. Outside of the correction range, the
raw encoder value is utilized.

As soon as this method creates and initializes the correction data, it is immediately put
into effect.

As a convenience, this instruction can be executed even when robot power is
enabled. So long as the corrections are small, this will result in a small instantaneous
motion of the motor.

power should be disabled to avoid any sudden, high speed motor

f WARNING: When first trying a new compensation data set, motor
motions.

Correction data sets can be created for any motor of the robot that you wish to
compensate. It is not necessary to create a correction table for all motors. Correction
tables stay in effect until they are over-written or the controller is restarted.

Please see the "Motor Linearity Compensation" section in the Controller Software >
Software Setup > Selected Setup Details and Procedures chapter of the Precise
Documentation Library for information on creating correction data sets and for more
information on this technique.

Examples

Dim cor(2) As Double

cor(0) =0
cor(l) = -18 " First step is too short
cor(2) = 5.3 " Second step is too long

Robot._DefLinComp(1, 1, 5000, 1000, 3, cor)
See Also

Robot Class

367

Robot Class

Robot.Dest Property

Returns a Cartesian Location whose value is equal to the originally planned final
destination of the previously executed motion.

...Robot.Dest (robot)

Prerequisites

None
Parameters
robot
An optional numeric expression that specifies the robot to be accessed
(2-n). If this value is 0 or unspecified, the Selected robot will be
accessed.
Remarks

This property can be used for retrieving the Cartesian position and orientation that was
originally planned as the final destination for the previously executed motion. The
previously executed motion can still be in progress or could have already stopped
executing when this property is accessed.

This information is useful since it is not altered even if the previous motion was
prematurely terminated due to a RapidDecel, E-Stop, or other condition. Consequently,
this data can be utilized to complete the previous motion.

Note that performing a motion that is relative to the Dest Location is not the same as
performing a Move.Rel instruction. The Move.Rel instruction will perform a incremental
motion relative to wherever the robot's final position was at the conclusion of the previous
motion. Moving relative to the Dest Location moves with respect to where the previous
motion was planned to terminate.

The following table describes the data returned in the Location value.

Property Returned Location Object value

Type Cartesian Location

PosWrtRef Set _equal to planned Qartesian_ position and orientation
destination of the previous motion.

RefFrame Always Null

Configuration bits for the planned destination of the
previous motion.

Config

368

Robot Class

ZClearance 1.0e32 to indicate not initialized
All other properties Always zeroed.

Examples

Dim DestLoc As Location
DestLoc = Robot.Dest() " Reads planned motion destination

See Also

Robot Class | Robot.DestAngles | Robot.LastProfile | Robot.Source | Robot.SourceAngles

369

Robot Class

Robot.DestAngles Property

Returns an Angles Location whose value is equal to the originally planned final
destination of the previously executed motion.

...Robot.DestAngles (robot)

Prerequisites

None
Parameters
robot
An optional numeric expression that specifies the robot to be accessed
(2-n). If this value is 0 or unspecified, the Selected robot will be
accessed.
Remarks

370

This property can be used for retrieving the axes positions that were originally planned as
the final destination for the previously executed motion. The previously executed motion
can still be in progress or could have already stopped executing when this property is
accessed.

This information is useful since it is not altered even if the previous motion was
prematurely terminated due to a RapidDecel, E-Stop, or other condition. Consequently,
this data can be utilized to complete the previous motion.

Note that performing a motion that is relative to the DestAngles Location is not the
same as performing a Move.Rel instruction. The Move.Rel instruction will perform a
incremental motion relative to wherever the robot's final position was at the conclusion of
the previous motion. Moving relative to the DestAngles Location moves with respect to
where the previous motion was planned to terminate.

The following table describes the data returned in the Location value.

Property Returned Location Object value
Type IAngles Location
Set equal to planned axes position destinations of the
Angles ;)
previous motion.
RefFrame Always Null
ZClearance 1.0e32 to indicate not initialized

All other properties |Always zeroed.

Robot Class

Examples

Dim DestLoc As Location
DestLoc = Robot.DestAngles() " Reads planned motion destination

See Also

Robot Class | Robot.Dest | Robot.LastProfile | Robot.Source | Robot.SourceAngles

371

Robot Class

Robot.Home Method

Homes the Attached robot to establish the reference positions for each axes.

Robot.Home

Prerequisites

e High power to the robot must be enabled.
e Arobot must be Attached by the thread.

Parameters

None

Remarks

This method allows a robot to be homed via a program statement. The homing process
reestablishes the reference (e.g. zero) position for each axis of the robot. This enables
the robot to reliably move to the same positions after each time that the controller is
restarted even when the robot is equipped with incremental, not absolute encoders.

The axes homing sequence must be executed once for each axis after the system is
restarted and prior to executing any position controlled motions. Often, the homing
process is manually initiated via the operator control panel.

There are many different methods that can be employed to home an axis, e.g. home to
hard stop, home to limit switch, home to home switch, etc. The specific method for each
axis and the parameters for each method are pre-configured by the robot

manufacturer. The Home method simply executes the pre-configured method for the
robot Attached to the thread.

Examples
Robot.Attached = 1 " Attach a robot to the thread
Robot.Home() " Home the Attached robot

See Also

372

Robot Class | Robot.HomeAll

Robot Class

Robot.HomeAll Method

Homes all robots to establish the reference positions for each of their axes.
Robot.HomeAll

Prerequisites

e High power must be enabled.
e No robot can be Attached by a different thread.

Parameters
None
Remarks

This method allows all robots to be homed via a program statement. This homing
process reestablishes the reference (e.g. zero) position for each axis of each robot. This
enables the robots to reliably move to the same positions after each time that the
controller is restarted even when the robots are equipped with incremental, not absolute
encoders.

The axes homing sequence must be executed once for each axis of each robot after the
system is restarted and prior to executing a robot in position controlled mode. Often, the
homing process is manually initiated via the operator control panel.

There are many different methods that can be employed to home an axis, e.g. home to
hard stop, home to limit switch, home to home switch, etc. The specific method for each
axis and the parameters for each method are pre-configured by the robot

manufacturer. The HomeAll method simply executes the pre-configured method for all
robots.

Examples

Robot.HomeAll () " Execute home sequence for all robots
See Also

Robot Class | Robot.Home

373

Robot Class

Robot.JointToMotor Method

Converts an array of axis joint angles (in degrees or millimeters) to an equivalent array of
motor positions (in encoder counts). Automatically takes into account any motor coupling
and other factors.

Robot.JointToMotor (robot, joint_pos, motor_pos)

Prerequisites
None

Parameters
robot

An optional numeric expression that specifies the robot to be accessed
(2-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

joint_pos

A required array of double precision values that defines the axis position
values, in either degrees (for rotary axes) or millimeters (for linear axes),
that are to be converted into an equivalent array of motor encoder
positions. This array must have one value for each of the axes of the
robot. joint_pos(0) must contain the position for axis 1.

motor_pos

A required array of double precision values into which the computed
equivalent motor encoder positions are written in encoder counts. This
array must have at least one element for each motor of the

robot. motor_pos(0) will contain the position for motor 1.

Remarks

This method converts an array of axis joint angles, specified in degrees for rotary joints
and millimeters for linear axes, into an equivalent array of motor positions, specified in
encoder counts.

For many robots, there is a simple scalar relationship between joint angles and motor
encoder counts. However, some robots have a much more complicated relationship due
to mechanical coupling of motors, linearity compensation, encoder roll-over
compensation, and other factors.

374

Robot Class

This method can be executed for any robot and all factors that affect the relationship
between joint angles and motor encoder counts are automatically taken into
consideration.

Examples

Dim mot(4), jts(4), jt2(4) As Double
Dim cur_pos As New Location
Dim ii As Integer

cur_pos.Type = 1 " Read joint positions

Ccur_pos.Here

For ii =1 To 4 " Copy to jts array
Jjts(ii-1) = cur_pos.Angle(ii)

Next ii

Robot.JointToMotor(1, jts, mot) " Convert to enc counts
Robot._MotorToJdoint(1l, mot, jt2) ® Convert back to jt angles

See Also

Robot Class | Robot.MotorToJoint

375

Robot Class

Robot.LastProfile Property

Returns a Profile Object whose properties are equal to those of the currently executing
motion or the last executed motion if no motion is active.

...Robot.LastProfile (robot)

Prerequisites

None
Parameters
robot
An optional numeric expression that specifies the robot to be accessed
(2-n). If this value is 0 or unspecified, the Selected robot will be
accessed.
Remarks

This property extracts a copy of the motion Profile parameters that were specified for the
currently executing motion of a Robot or the last motion if no motion is now in
progress. The extracted values are returned in a Profile Object.

If the previous motion was interrupted due to an error, this property, in combination with
the Dest or DestAngles properties, is very useful for retrying the motion.

Examples

Dim Profilel As Profile
Profilel = Robot.LastProfile() " Reads last Profile utilized

See Also

Robot Class |Robot.Dest | Robot.DestAngles

376

Robot Class

Robot.MotorTempStatus Property

Returns an Integer value that indicates the temperature status of a motor.
...Robot.MotorTempStatus (robot, motor)

Prerequisites

The motor must support temperature sensing and motor temperature monitoring must be
enabled. Motor temperature monitoring is enabled by setting Max motor temperature
(DatalD 10110) to a non-zero value.

Parameters
robot
An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.
motor
A required numeric expression that specifies the motor to be accessed
(1-n).
Remarks

This property returns an Integer code that indicates the temperature status of a motor.

This value permits a program to determine if a motor's temperature is within its normal
operating range without needing to know the configuration parameters for the motor. If
required, the specific motor temperature value can be accessed by reading the Motor
temperature (DatalD 12110) parameter.

The following table describes the codes returned by this property.

REMmEe Description
Code

'Temperature monitoring is not enabled for this motor. Use

-1 parameter Max motor temperature (DatalD 10110) to enable
temperature monitoring.

0 The motor's temperature is within its normal operating range.
The motor's temperature is within the warning temperature range.

1 See Warning motor temperature (DatalD 10111) to set the warning
temperature value.

377

Robot Class

The motor's temperature has exceeded its maximum permitted
value.

See the Motor Temperature Sensing section in the Controller Software Setup chapter
of the Precise Documentation Library for details on the operation of supported motor
temperature sensors.

Examples

Dim temp As Integer
temp = Robot.MotorTempStatus(l, 2)
IT temp > 0 Then
IT temp > 1 Then
Controller.SystemMessage(‘'"Motor temperature too high'™)
Else
Control ler.SystemMessage(‘*'"Motor temperature warning')
End If
End If

See Also

Robot Class

378

Robot Class

Robot.MotorToJoint Method

Converts an array of motor positions (in encoder counts) to an equivalent array of axis
joint angles (in degrees or millimeters). Automatically takes into account any motor
coupling and other factors.

Robot.MotorToJoint (robot, motor_pos, joint_pos)

Prerequisites
None
Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(2-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

motor_pos

A required array of double precision values that defines the motor
encoder position values that are to be converted into an equivalent array
of joint axis positions. This array must have one value for each of the
motors of the robot. motor_pos(0) must contain the position for motor 1.

joint_pos

A required array of double precision values into which the computed
equivalent joint axis positions are written in either degrees (for rotary
axes) or millimeters (for linear axes). This array must have at least one
element for each axis of the robot. joint_pos(0) will contain the position
for axis 1.

Remarks

This method converts an array of motor positions, specified in encoder counts, into an

equivalent array of axis joint angles, specified in degrees for rotary joints and millimeters
for linear axes.

For many robots, there is a simple scalar relationship between motor encoder counts and
joint angles. However, some robots have a much more complicated relationship due to
mechanical coupling of motors, linearity compensation, encoder roll-over compensation,
and other factors.

379

Robot Class

This method can be executed for any robot and all factors that affect the relationship
between motor encoder counts and joint angles are automatically taken into
consideration.

Examples

Dim mot(4), jts(4), jt2(4) As Double
Dim cur_pos As New Location
Dim ii As Integer

cur_pos.Type = 1 " Read joint positions

Ccur_pos.Here

For ii =1 To 4 " Copy to jts array
Jjts(ii-1) = cur_pos.Angle(ii)

Next ii

Robot.JointToMotor(1, jts, mot) " Convert to enc counts
Robot._MotorToJdoint(1l, mot, jt2) ® Convert back to jt angles

See Also

380

Robot Class | Robot.JointToMotor

Robot Class

Robot.Payload Property

Asserts or retrieves the last asserted value that specifies the mass of the payload being
carried by the robot (as a percentage of the maximum payload).

Robot.Payload = <new_percentage>
Or
... Robot.Payload (robot)

Prerequisites

e Setting the payload only affects the performance of the robot if the robot's
kinematic module supports Dynamic Feedforward compensation (DFF) and if
DFF is enabled.

e For the set operation, the robot must either be attached to the current thread or
must not be attached to any thread.

Parameters
robot
An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.
Remarks

This property either asserts or retrieves the last asserted value that specifies the mass of
the payload being carried by the robot. For clarity, this property does not measure the
mass of the payload, it simply sets the estimated mass or reads the last set value.

For robots that have Dynamic Feedforward compensation enabled (DFF), this property
will adjust the feedforward for each of the robot's axes to compensate for the mass of the
payload. If full DFF compensation is supported, changing this value will alter the gravity
compensation for each affected axis and will adjust the axes servo control loops to
command torques to compensate for the inertial load of each motor as well as to
account for such factors as centripetal and Coriolis forces.

For example, if a robot picks up a very heavy payload, specifying a new mass value that
correctly estimates the load will improve the gravity balancing of any axis that is placed
into Manual Control Free Mode. This improved estimate will also reduce the position
tracking errors of all axes during computer controlled motions.

For simplicity, the payload is specified as a percentage of the maximum mass defined by
the "Dynamic feedforward mass, kg" (DatalD 16067).

381

Robot Class

Since changing the payload alters the behavior of the servo loops, as a precaution, if the
robot is in motion when the value of this property is altered, GPL automatically waits until
the motion is completed before applying the change. Once the payload is changed, the
new value will remain in effect until the Robot.Payload is altered or the controller is
powered down and restarted. As a convenience, when the controller is restarted, the
initial value of the payload is automatically set to the value specified by the "Dynamic
feedforward default % payload" (DatalD 16071).

Examples

Robot.Attached = 1

Robot.Payload = 50 * 1/2 maximum payload being carried
Console.WriteLine(Robot.Payload()) " Outputs a value of 50

See Also

Robot Class

382

Robot Class

Robot.RapidDecel Property

Sets the internal Boolean flag that forces any in-process motion for a robot to be rapidly
decelerated to a stop.

Robot.RapidDecel (robot)

Prerequisites

None
Parameters
robot
An optional numeric expression that specifies the robot to be accessed
(2-n). If this value is 0 or unspecified, the Selected robot will be
accessed.
Remarks

Setting the RapidDecel flag immediately initiates a rapid deceleration of any motion in
progress for the specified robot. At the conclusion of the deceleration, no error is
signaled and program execution continues un-interrupted. The motion will, however,
have been stopped at a location different from the original plan. If the robot was not in
motion, setting this flag is ignored. At the start of the next motion, the RapidDecel flag is
automatically reset.

The RapidDecel feature can be used to stop motions prematurely due to an external
signal, such as tripping a switch, touch sensor, or force sensor. Since these are
expected events, program processing is not halted.
In that this flag stops any in-process motion, it is similar in effect to the Soft E-Stop, Hard
E-Stop, and Disable Power functions. However, those functions are typically used to
stop all robots simultaneously when an unexpected event occurs and they therefore
generate error conditions.

Examples
Robot.RapidDecel () " Triggers a rapid decel of Selected robot

See Also

Robot Class | Controller.PowerEnabled | Controller.SoftEstop

383

Robot Class

Robot.RealTimeModAcm Property

Returns a Cartesian Location whose value is equal to the accumulated path
modifications generated by the Real-time Trajectory Modification mode.

... Robot.RealTimeModAcm (robot)

Prerequisites

None
Parameters
robot
An optional numeric expression that specifies the robot to be accessed
(2-n). If this value is 0 or unspecified, the Selected robot will be
accessed.
Remarks

When the Real-time Trajectory Modification mode is enabled (via the
Move.StartRealTimeMod method), this property can be used to sample the
instantaneous accumulated path modification value computed by this special mode of
operation. Knowledge of the accumulated change is not required in most applications,
but this value can be of use in certain situations.

The interpretation of the accumulated change Location is a function of the coordinate
frames utilized to apply the real-time modifications and to accumulate the changes. For

each of the primary modes of the Real-time Modification method, the planned set point
transformation is conceptually computed each trajectory cycle as follows:

World-World Mode

Updated_position = Accumulated_position +
SetPoint_position
Updated_orientation = Accumulated_orientation *
SetPoint_orientation

Tool-World Mode

Updated_transform = Accumulated_transform *
SetPoint_transform

Tool-Tool Mode

384

Robot Class

Updated_transform = SetPoint_transform *
Accumulated_transform

Examples

Dim dz As Double
dz = Robot.RealTimeModAcm.Z ® Accumulated change in Z position

See Also

Robot Class | Move.StartRealTimeMod | Move.SetRealTimeMod

385

Robot Class

Robot.RestartBase Property

Gets the position and orientation offset for the base of the robot that was set when the
controller was restarted.

... Robot.RestartBase (robot)

Prerequisites

None
Parameters
robot
An optional numeric expression that specifies the robot to be accessed
(2-n). If this value is 0 or unspecified, the Selected robot will be
accessed.
Remarks

As a convenience, when the controller is restarted, the "base" for each robot is
automatically set equal to the position and orientation offset defined by its "Base set at
restart” (DatalD 16052) value. Since many applications utilize the same base offset each
day, this ensures that the Base dimensions are correctly set when the system is
restarted.

This property returns a Cartesian Location value that is equal to the Base dimensions
that were set the last time that the system was restarted.

Once set, these Base dimensions can be easily modified using the Robot.Base
property. See that property for additional information on the use and benefits of the Base
property.

Examples

Robot.Attached = 1
Robot._Base = Robot.RestartBase() " Set base back to default

See Also

Robot Class | Robot.Base

386

Robot Class

Robot.RestartTool Property

Gets the position and orientation offset for the tool or gripper of the robot that was set
when the controller was restarted.

... Robot.RestartTool (robot)

Prerequisites

None
Parameters
robot
An optional numeric expression that specifies the robot to be accessed
(2-n). If this value is 0 or unspecified, the Selected robot will be
accessed.
Remarks

As a convenience, when the controller is restarted, the tool for each robot is automatically
set equal to the position and orientation offset defined by its "Tool set at restart" (DatalD
16051) value. Since many applications utilize the same tool or gripper each day, this
ensures that the Tool dimensions are correctly set when the system is restarted.

This property returns a Cartesian Location value that is equal to the Tool dimensions
that were set the last time that the system was restarted.

Once set, these Tool dimensions can be easily modified using the Robot.Tool
property. See that property for additional information on the use and benefits of the Tool

property.

Examples

Robot.Attached = 1
Robot.Tool = Robot.RestartTool() " Set tool back to default

See Also

Robot Class | Robot.Tool

387

Robot Class

Robot.Selected Property

Sets and gets the default robot number to be used when accessing a specific robot.

Robot.Selected = <robot_number>
Or
... Robot.Selected

Prerequisites
None

Parameters
None

Remarks

This property allows a thread to set its default robot number. Most of the properties and
methods that reference a robot allow the robot number to be explicitly specified or to be
unspecified and utilize the Selected robot number by default. However, there are some
methods, such as the location_object.Here, that always access the Selected robot.

The Selected robot number is an Integer that ranges from 1 to N.

When a robot is Attached, the system forces the Selected property to be equal to the
Attached value.

Examples

Dim iRobot As Integer
Robot.Selected = 1 " Robot #1 is now Selected
iRobot = Robot.Selected " iRobot will be set to 1

See Also

Robot Class | Robot.Attached

388

Robot Class

Robot.Source Property

Returns a Cartesian Location whose value is equal to the starting position and
orientation of the previously executed motion.

...Robot.Source (robot)

Prerequisites

None
Parameters
robot
An optional numeric expression that specifies the robot to be accessed
(2-n). If this value is 0 or unspecified, the Selected robot will be
accessed.
Remarks

This property can be used for retrieving the Cartesian position and orientation for the
starting position of the previously executed motion. The previously executed motion can
still be in progress or could have already stopped executing when this property is
accessed.

The value returned by this property does not reflect any blending that may have occurred
if the motion was executed as part of a continuous path. That is, the value returned will
be the same whether or not continuous path was in effect.

This information is very useful when accessed in combination with the Dest Location to
reconstruct the previously planned motion. For example, this is beneficial for moving the
robot's tool back onto the previous path if the previous motion was prematurely
terminated via a RapidDecel.

The following table describes the data returned in the Location value.

Property Returned Location Object value

Type Cartesian Location
Set equal to starting Cartesian position and orientation of

PosWrtRef : .
the previous motion.
RefFrame Always Null
Config Configuration bits for the start of the previous motion.
ZClearance 1.0e32 to indicate not initialized
All other properties Always zeroed.

389

Robot Class

Examples

Dim SourcelLoc As Location
SourceLoc = Robot.Source() " Reads starting motion location

See Also

Robot Class | Robot.Dest | Robot.DestAngles | Robot.LastProfile | Robot.SourceAngles

390

Robot Class

Robot.SourceAngles Property

Returns an Angles Location whose value is equal to the starting axes positions of the
previously executed motion.

...Robot.SourceAngles (robot)

Prerequisites

None
Parameters
robot
An optional numeric expression that specifies the robot to be accessed
(2-n). If this value is 0 or unspecified, the Selected robot will be
accessed.
Remarks

This property can be used for retrieving the axes positions that represent the starting
position of the previously executed motion. The previously executed motion can still be
in progress or could have already stopped executing when this property is accessed.

The value returned by this property does not reflect any blending that may have occurred
if the motion was executed as part of a continuous path. That is, the value returned will
be the same whether or not continuous path was in effect.

This information is very useful when accessed in combination with the DestAngles
Location to reconstruct the previously planned motion. For example, this is beneficial for
moving the robot's axes back onto the previous path if the previous motion was
prematurely terminated via a RapidDecel.

The following table describes the data returned in the Location value.

Property Returned Location Object value
Type IAngles Location
Angles Set equal to initial axes positions of the previous motion.
RefFrame Always Null
ZClearance 1.0e32 to indicate not initialized
All other properties |Always zeroed.

Examples

391

Robot Class

Dim SourceLoc As Location
SourceLoc = Robot.SourceAngles() " Reads initial motion position

See Also

Robot Class | Robot.Dest | Robot.DestAngles | Robot.LastProfile | Robot.Source

392

Robot Class

Robot.SpeedAngles Property

Returns an Angles Location whose components contain the instantaneous speeds of
each of the robot's axes.

...Robot.SpeedAngles (robot)

Prerequisites

None
Parameters
robot
An optional numeric expression that specifies the robot to be accessed
(2-n). If this value is 0 or unspecified, the Selected robot will be
accessed.
Remarks

This property returns the instantaneous speed of each of the robot's axes. These speeds
are determined by sampling the encoder values, differencing and filtering these values,
and then converting them to joint angles. The conversion to joint angles takes into
consideration any mechanical coupling between the motors and other kinematic
considerations.

This property returns the axes speed values in the Angles properties of an Angles
Location. The speeds are in units of mm/sec or degrees/sec as appropriate.

The following table describes the data returned in the Location value.

Property Returned Location Object value

Type Angles Location
Set equal to the instantaneous speeds for each of the axes

Angles of the robot in mm/sec or deg/sec.
RefFrame Always Null

Config Always zeroed.

ZClearance 1.0e32 to indicate not initialized

All other properties Always zeroed.

Examples

Dim RobotPos As Location
Dim jt3 As Double

393

Robot Class

RobotPos = Robot.SpeedAngles() " How fast is each axis moving?
Jt3 = RobotPos.Angle(3) " Speed of axis 3
See Also

Robot Class | Robot.Where | Robot.WhereAngles| location_object.Here

394

Robot Class

Robot.Tool Property

Sets and gets the position and orientation offset for the tool or gripper of the robot.

Robot.Tool = <Cartesian_location>
Or
... Robot.Tool (robot)

Prerequisites

e For the set operation, the robot must either be attached to the current thread or
must not be attached to any thread.
e For the set operation, the Location must be of the Cartesian type.

Parameters
robot
An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is O or unspecified, the Selected robot will be
accessed.
Remarks

This property permits a project to either set or retrieve the Cartesian Location Object
that defines the position and orientation offset from the last axis of the robot to the center
point of the robot's gripper (or tool).

The Tool definition is particularly beneficial for robots that can change the orientation of
the gripper. When the tool center point is properly defined and the system is instructed to
move along a straight-line path, the tool center point will move along a straight line even if
the orientation of the gripper is simultaneously changed. Also, in Jog-Tool control mode,
the operator can easily rotate the tool center point while maintaining the same position.

For the majority of simple grippers, the gripper dimensions consist of just an offset along
the Z-axis of the robot with no change in orientation. This corresponds to an Location
XYZ specification of "0,0,tool_length,0,0,0".

Once the Robot.Tool has been set, these dimensions remain in effect until the Tool
property is set again or the controller is powered down and restarted. As a convenience,
when the controller is restarted, a "Restart Tool" definition is automatically put into effect
based upon the values of "Tool set at restart" (DatalD 16051).

Changing the Tool dimensions instantaneously changes where the system thinks that the
robot's Cartesian set point is located. So, if the robot is in motion when a thread attempts

395

Robot Class

to set the Tool, GPL automatically waits until the motion is completed before executing
this instruction.

Examples

Dim tool As New Location
Robot.Attached = 1
tool .XYZ(0, 0, 100) " Simple tool with 100mm length

Robot.Tool = tool
Console.WriteLine(Robot.Tool().Z) " Outputs a value of 100

See Also

Robot Class | Robot.RestartTool

396

Robot.TrajState Property

Robot Class

Returns a numeric value that provides state information for the Trajectory Generator or
the currently executing motion for a given robot.

...Robot.TrajState (robot, mode)

Prerequisites

An optional numeric expression that specifies the robot to be accessed
(2-n). If this value is 0 or unspecified, the Selected robot will be

An optional numeric expression that specifies the type of state
information that is to be returned. If no value is specified, a mode of 0 is

None
Parameters
robot
accessed.
mode
assumed.
Remarks

This property returns various state information for the trajectory generator or the currently
executing motion for a specific robot depending upon the value of the mode parameter.

mode 0: Basic Trajectory State

This property returns a value that indicates whether a trajectory is currently being

evaluated for the specified robot and, if so, what portion of the trajectory is being
generated. This value can be utilized to determine if a trajectory is being ramped up to its
maximum speed, being ramped, waiting for final position errors to be nulled, sitting idle,

performing a special control mode, etc.

The possible values returned by this property are presented in the following table:

TrajState Description (Mode =0, Basic Trajectory State)
0 Halted, Trajectory Generator not being executed and no robot
attached
1 Idle, Trajectory Generator ready to service commands but no
motion in progress.

397

Robot Class

Position controlled mode, accelerating up to maximum speed
Position controlled mode, moving at constant velocity

Position controlled mode, blending two motions together
Position controlled mode, decelerating robot to a stop
Position controlled mode, force overlapping two motions together
\Velocity controlled mode

Special motor speed control mode, usually indicates homing
Jog (manual) control mode

External trajectory control, special mode

Motion terminated, waiting for final position to satisfy InRange
criteria

o D
RIS|o|o|o|a|s|w|n

15

mode 1: Active Motion Status

This property returns a value that indicates whether the currently active or the previous
motion (if none is currently active) has been initiated or has terminated and, if so, whether
the motion ran to completion or was prematurely terminated.

The possible values returned by this property are presented in the following table:

TrajState Description (Mode =1, Active Motion Status)
0 No motion posted for execution yet.
Motion was posted to the trajectory generator but was rejected
1 because it didn't match the end point of the previous motion (this

\value is normally never returned).
Motion has been posted to the trajectory generator for execution but

2 has not started yet (this value is normally never returned).
Motion has been posted that is to be executed in continuous path

3 mode with respect to the previous motion (this value is normally
never returned).

4 Motion currently being executed.
Motion terminated or is being terminated, but the motion did not run

5 to completion and the robot did not or will not reach its planned
destination.

6 Motion terminated and ran to completion and reached its planned
destination.

mode 2: Motion Counter

Each time that a new motion is executed for a specific robot, the robot's Motion Counter
is incremented. This value can use used to verify that the data being analyzed is with
respect to the same motion. This is a 32-bit integer counter and should not roll-over for
most practical situations.

mode 3: Active Motion Type

This property returns a value that indicates the type of motion being executed, e.g.
Cartesian straight-line, joint interpolated, etc. Some of the values returned are for special
modes and are not documented.

TrajState Description (Mode = 3, Active Motion Type)

398

Robot Class

0 Joint interpolated motion
1 Cartesian straight-line motion
2 Circular interpolated motion

Special motion types, such as velocity or jog or external trajectory
control modes.

mode 4: Total Motion Time in Seconds

For the currently executing motion or the previous motion (if no motion is currently
executing), this value returns the total motion time in seconds. If the motion is part of a
continuous path, some of the specified time will be overlapped with the previous or the
next motion.

mode 5: Motion Elapsed Time in Seconds

This indicates the number of seconds that have elapsed since the start of the currently
executing motion or the previous motion (if no motion is currently executing). After a
motion completes execution, this timer continues to increase in value until the next
motion begins execution, at which time the timer is reset to zero.

mode 6: Motion Interpolation Factor

This is the factor that is computed by the Trajectory Generator to interpolate between the
starting and the ending position of the currently executing motion. Initially, it has a value
of 0. At the end of the motion, it will have a value of 1. This factor can be used to
determine how far the trajectory has progressed. For example, for Cartesian straight-line
motions, this value indicates how far the robot is from the initial or the final position.

Examples

Dim istate As Integer
istate = Robot.TrajState() " Reads current trajectory state

See Also

Robot Class

399

Robot Class

Robot.Where Property

Returns a Cartesian Location whose value is equal to the current position and
orientation of a robot.

...Robot.Where (robot)

Prerequisites

None
Parameters
robot
An optional numeric expression that specifies the robot to be accessed
(2-n). If this value is 0 or unspecified, the Selected robot will be
accessed.
Remarks

400

This property returns the current position and orientation of a robot in a Cartesian
Location. This position and orientation automatically take into account both the robot's
Base and Tool offsets.

The returned value is computed by reading the instantaneous values of each motor's
encoder and converting these values into an equivalent Cartesian position and
orientation. These sampled values are usually slightly different than the commanded
axes set point positions due to servo tracking errors and small positional errors.

The conversion to Cartesian coordinates make use of the optional Kinematic module for
the selected robot.

Note, if you wish to update the position and orientation of a Location variable, it is often
better to utilize the location_object.Here method rather than simply assigning the Where
Location to the variable. The Here method preserves the other properties of the
Location variable and will automatically take into account any reference frame
(RefFrame).

The following table describes the data returned in the Location value.

Property Returned Location Object value
Type Cartesian Location
PosWrtRef i)ebtoetqual to current Cartesian position and orientation of a

Robot Class

RefFrame Always Null
. Configuration bits for the current robot position and
Config :)
orientation.
ZClearance 1.0e32 to indicate not initialized
All other properties Always zeroed.

Examples

Dim RobotPos As Location
RobotPos = Robot.Where()

See Also

Robot Class | Robot.SpeedAngles| Robot.WhereAngles

* Where is the robot right now?

location object.Here

401

Robot Class

Robot.WhereAngles Property

Returns an Angles Location whose value is equal to the current axes positions of a
robot.

...Robot.WhereAngles (robot)

Prerequisites

None
Parameters
robot
An optional numeric expression that specifies the robot to be accessed
(2-n). If this value is 0 or unspecified, the Selected robot will be
accessed.
Remarks

This property returns the current positions of the axes of a robot in a Angles Location.

The returned value is computed by reading the instantaneous values of each motor's
encoder and converting these values into equivalent axes positions. These sampled
values are usually slightly different than the commanded axes set point positions due to
servo tracking errors and small positional errors.

Note, if you wish to update the position of a Location variable, it is often better to utilize
the location_object.Here method rather than simply assigning the WhereAngles
Location to the variable. The Here method preserves the other properties of the
Location variable.

The following table describes the data returned in the Location value.

Property Returned Location Object value
Type Angles Location
Angles Set equal to current position of each axes of a robot.
RefFrame Always Null
Confi Configuration bits for the current robot position and
onfig , .
orientation.
ZClearance 1.0e32 to indicate not initialized
All other properties Always zeroed.

Examples

402

Robot Class

Dim RobotPos As Location
RobotPos = Robot.WhereAngles() * Where is the robot right now?

See Also

Robot Class | Robot.SpeedAngles | Robot.Where | location_object.Here

403

Signal Class

Signal Class Summary

The following pages provide detailed information on the properties and methods of the
global Signal Class. This class provides access to the simple hardware interfacing
features of the Guidance controller, such as the digital and analog input and output (1/O).
These common interfaces allow a GPL program to coordinate its actions with those of
other devices.

Using the digital I/O, programs can employ semaphores to interlock their execution with
other equipment in the work cell such as feeders or processing machines. Using the
analog I/0, programs can sample the values of simple sensors such as force or
temperature sensors to alter the sequence of program execution.

As is standard in GPL, conversions between different arithmetic types, e.g. Boolean,
Integer, Single, Double, are automatically performed as required. So, for numeric
properties and methods of the Signal Class, it is not necessary to have different
variations of these members to deal with the different possible mixes of input parameter
data types. Also, as appropriate, the properties and methods generally produce results
that are formatted as Double’s. These results will automatically be converted to smaller
data types as necessary, e.g. Double -> Integer, and will not generate an error so long
as numeric overflow does not occur.

The table below briefly summarizes the properties and methods that are described in
greater detail in the following sections.

Member Type Description

Sets and gets the values of the analog

Signal. AIO Property input and output channels.
Sianal DIO Property Sets and gets the values of the digital input

and output channels.

404

Signal.AlO Property

Sets and gets the values of the analog input and output channels.

Signal.AlO(channel)=<new_value>

Or
... Signal.AlO(channel)

Prerequisites
None
Parameters

channel

A required numeric expression that specifies the analog channel to be
accessed. The allocated ranges of channel numbers are as follows:

Channel Type

Minimum
number

Max allocated
number

Analog outputs

1

10000

Analog inputs

10001

20000

Please consult the hardware specification for your specific version of
controller for information on the maximum number of input and output

channels available on your system.

Only the value of an output channel can be written. The current values of
both input and output channels can be read.

Remarks

Signal Class

At the hardware level, both analog input and analog output signals levels are represented
by integer numbers whose ranges are a function of the specific model of your controller.
To generalize accessing these devices at the GPL level, analog values are represented

by floating point numbers that are scaled, offset, and thresholded relative to the raw

hardware values.

In many systems, analog values are configured to range from either +-1.0 or +-100.

Please consult the personnel who configured your controller for the applicable ranges of

possible analog values.

Examples

405

Signal Class

Dim sensor_reading As Single

sensor_reading = Signal _.A10(10001) "Sets sensor_reading equal to the
"scaled value of the first analog
"input channel

See Also

Signal Class | Signhal.DIO

406

Signal.DIO Property

Sets and gets the values of the digital input and output channels.

Signal.DIO(channel, count)=<new_value>

Or

... Signal.DIO(channel, count)

Prerequisites

None

Parameters

channel

count

Remarks

A required numeric expression that specifies the first digital channel to
be accessed. Signal numbers are organized into ranges based on the
signal type. Within those ranges, the signals are organized into banks of
96 1/0 points. The bank numbers start at 0. A signal number is formed by
adding the signal base value to 100 times the bank number.

In a distributed servo network, general digital I/O signals on the slave
controllers may be accessed from the master controller by adding
100000 times the slave controller node number to the signal number.

An optional numeric expression that specifies the number of successive
digital channels to be accessed. The value may range from 1 to 32. If
omitted, only a single channel is accessed and the property value is a
Boolean.

If specified, the property value is a numeric bit mask. Omitting the count
parameter is not the same as specifying a count of 1.

If multiple channels are specified, all channels within the range signal to
signal+count-1 must be valid.

Signal Class

When specifying DIO signal (channel) numbers, a positive base signal number indicates
that the signal is True if its logical level is high. A negative base signal number indicates
that the signal is True if its logical level is low. For example, if the channel is 10001, the

signal is True if the input is at a logic high level. If the channel is —10001, the signal is

True if the input is at a logic low level.

407

Signal Class

408

Only an output DIO signal can be written. The current values of both input and output
signals can be read.

If count is specified, the DIO specified by channel corresponds to bit 0 of the property
value. channel+1 corresponds to bit 1, channel+n corresponds to bit n, where n < count.

The table below shows the possible signal numbers based on the type and the bank.

Signal Type Signal Base Signal Range Banks
Test 0 0
0 = Local outputs,
General 1 1 + 100*bank 1-15 = Remote outputs on
outputs 96 + 100*bank |RIO or MODBUS/TCP
modules.
Dedicated 8001 8001 + 100*bank |0 = Controller outputs,
outputs 8096 + 100*bank |1-15 = axis outputs.
0 = Local inputs,
General 10001 10001 + 100*bank [1-15 = Remote inputs on
inputs 10096 + 100*bank [RIO or MODBUS/TCP
modules.
Dedicated 18001 18001 + 100*bank [0 = Controller inputs,
inputs 18096 + 100*bank [1-15 = axis inputs.
Software 1/10 20001 20001 - 20064 |[Not used
Reserved 21001 21001 - 100000

Servo Network
node n general | 100000*n + 13 100000*n + 20 [0 = Local outputs only

outputs

Servo Network .

node n general 100000*n + 100000*n + 10012 [0 = Local inputs only
inputs 10001

Servo Network
node n dedicated
inputs and
outputs

Slave controller dedicated
IO cannot be accessed by
the master controller

The following describes the different type of digital 10 signals:

DIO Type Description
Test Channel 0 is a special test value that always reads False
no matter what value is written to it.
General These are the “user” DIO signals that are provided in the

controller or remote 1/0 boards. They do not have a
predefined use and can be freely employed. In some
cases, general DIO may be configured to serve as
dedicated 10. For example, a general DIO can be
configured as a joint over-travel limit.

Dedicated The dedicated DIO are pre-defined to fixed machine
control functions such as a home sensor. Some of these
signals are assigned to specific pins. However, others can
be mapped to General DIO pins.

Software These “soft” 10 do not drive or read actual hardware output
or input signals. They can be used as semaphores

Signal Class

between threads or in place of hardware DIO for testing

control algorithms.

Please consult the hardware specification for your specific version of controller for
information on the maximum number of input and output channels of each type available

on your system.

Examples

Dim semaphore As Boolean
Signal .DI0(20001) = True

semaphore = Signal .DI0(-20001) -

Signal .DIO (20001) = 4

Signal .DIO (20001, 1)
Signal .DI0 (20001, 3)

See Also

Signal Class | Signal.AlO

Sets soft signal 20001 to True
Will set semaphore value to False
Sets soft signal 20001 to True
since 4 is non-zero.

Sets soft signal 20001 to False
Sets soft signal 20001 to False
and soft signal 20002 to False
and soft signal 20003 to True

409

Statements

Statements Summary

The following pages provide detailed information on the basic statements that are
provided as an integral portion of the Guidance Programming Language. These
statements provide standard functionality found in any programming language such as
control structures, variable declarations, subroutine and function calls, etc. As much as
possible, these statements have been modeled after standard instructions provide by
other variants of the Basic Programming Language.

The table below briefly summarizes the statements that are described in greater detail in

the following sections.

Statement Description
Call Transfers control to a procedure and ignores its return value.
Used within a Select...Case...End Select sequence to
Case / Case Else specify possible matches for the target value and to delineate
the statements to be executed if a match occurs.
Class Begins a Class definition.
Const Declares a read-only variable for use in a procedure.
Creates a Delegate class that provides a means for indirectly
Delegate calling a function or subroutine procedure using an object
variable.
Dim Declares a variable for use in a procedure.
Bounds a block of instructions that are repeatedly executed
Do...Loop S0 long as a specified expression evaluates to True or until
the expression value becomes True.
Else Elself Used W_it_hin an If...Then...EIse._..End If serie_s of statements
- to conditionally execute alternative blocks of instructions.
End Marks the end of a control structure or major project element
—— such as a program or function.
Terminates the execution of a block of instructions within the
EXxit innermost control structure of a specified type or a
procedure.
Bounds a block of instructions that are repeatedly executed a
For...Next o .
— specified number of times.
Function Begins a user-defined function procedure.
Get Begins a Get procedure block within a Property procedure
— definition.
Performs an unconditional branch and continues execution at
Goto e ; .
a specified labeled instruction.
Conditionally executes a block of embedded statements
If...Then...Else...End :
based upon the value of an expression.

410

Statements

Marks the end of a Do...Loop block of instructions and in

Loop some instances also specifies the loop termination condition.
Module Begins a user-defined m(_)du_le section. All variable defi_ni_ti_ons
— and procedures must be inside a Module or Class definition.
Next Marks the end of a For...Next block of instructions.
Property Begins a user-defined Property procedure.

: Increases or decreases an array size by changing the array's
ReDim
— upper bounds.
Return Causes a user-define procedure to return control to the

calling procedure and optionally return a value.

Select...Case...End

Select

Evaluates a target expression, compares its value to a series
of values and executes the block of statements associated
with the first matching value.

Set

Begins a Set procedure block within a Property procedure
definition.

Sub

Begins a user-defined subroutine procedure.

While...End While

Bounds a block of instructions that are repeatedly executed
S0 long as a specified expression evaluates to True.

411

Statements

Call Statement

This statement transfers control to procedure, and ignores its return value.

Call procedure_name([argument_list])
gr;l class_name.procedure_name([argument_list])
gr;l object_name.procedure_name([argument_list])
Prerequisites
None
Parameters

procedure_name

The name of procedure to be called. This procedure can be either user-
defined or built-in. It can be a function (Function), a subroutine(Sub) or a
method of a built-in class.

class_name
The name of a built-in class of which procedure_name is a member.
object_name

The name of a object that is an instance of a built-in class of which
procedure_name is a member

argument_list

A list of argument values that are passed to the procedure. The
argument_list may be empty, or may be a list of argument values,
separated by “,”, that correspond to the arguments in the called
procedure.

argument, argument, argument

The type and number of arguments must match the parameters in the
declaration of the called procedure. For a ByVal parameter, the
argument can be any expression of the matching type. For a ByRef
parameter, the argument must be a variable of the matching type.

Remarks

412

Statements

When a procedure is called, the current procedure is suspended until the called
procedure exits. Some procedures (e.g. Function procedures) can return a value. The
Call statement does not allow the returned value to be accessed.

The Call statement is optional. It can be omitted and the procedure_name specified as
the first item in the statement.

Examples

Call my_subroutine(10, 20, 30)
my_subroutine(10, 20, 30) " Same as above
Call Move.OneAxis(1, 30, 0, MyProfile)

See Also

Statements | Function Statements | Sub Statements

413

Statements

Case, Case Else Statements

These instructions are used within a Select...Case...End Select series of
statements. Each Case specifies possible matches for the value to be matched and
delineates the statements to be executed if a match occurs.

Select match_value
Case test_expression, ..., test_expression
case_statements
[Case test_expression, ..., test_expression
[case_statements]]
[Case Else

[else_statements]]
End Select

Prerequisites
Can only be specified within a Select...Case...End Select series of statements.
Remarks

Please see the documentation on the Select...Case...End Select statements for an
explanation on the use of the Case and Case Else instructions.

See Also

Statements | Select...Case Statements

414

Statements

Class Statement

This statement begins a Class definition.
[Public | Private] Class class_name

Prerequisites

A Class may only be declared at the top level of a file, within a Module, or within another
Class.

Parameters
class_name
The name of the Class being defined.
Remarks
A Class definition must always end with an End Class statement.

If a Class is declared Public, it can be accessed from outside the Module or Class in
which it is defined. A Private Class can only be accessed within the Module or Class
where it is defined. If the Public attribute is omitted, the Class defaults to Private.

Other attributes such as Friend or Protected are not supported.

Variables, constants, and procedures defined within the Class are members of the Class
and can only be accessed by first specifying the Class or an object of the Class.

Examples
Public Class cc " Begin the class
Public x As Single " Variable x is in cc object
Public y As Single " Variable y is in cc object
End Class
Sub test
Dim obj As New cc " Create object of class cc
obj.x = 2.5 " Set x value in new object
End Sub
See Also

Statements | Module Statement

415

Statements

Const Statement

This statement declares a read-only variable for use in a procedure. Use the Dim
statement for normal read-write variables.

[Public | Private] [Dim] Const variable_name As type = init

Prerequisites

e A Const statement can only appear inside a class, procedure or a module.
e The Public and Private keywords cannot be used inside a procedure.

Parameters
variable_name

The name of the variable to be declared as a constant.

type
The type to be assigned to this variable. The type must be a primitive
type or a String. The primitive type keywords are:

Boolean, Byte, Double, Integer, Short, Single

init
An expression that specifies the initial value for the new variable. It must
have a constant value. It may only be composed of numeric or String
constants, other Const variables, or built-in system functions.

Remarks

Only the Const statement can set the value of this variable. Everywhere else, an error
occurs if an attempt is made to modify the value.

The Dim keyword is optional.
If both Public and Private are omitted, the default is Private.
Const variables declared within a class definition are implicitly Shared.

Unlike other declarations, only a single variable may be declared in one Const
statement.

416

Statements

Const variables declared within a procedure definition are initialized in the order in which
they occur and are known only within that procedure. Const variables outside procedures
may arbitrarily make forward references to other Const variables.

Examples

Const cl As Integer 10
Const c2 As Integer = cl + 1
Const ascii_a As Integer = ASC('"a'™)

See Also

Statements | Dim statements | ReDim statements

417

Statements

Delegate Statement

This statement creates a Delegate class that provides a means for indirectly calling a
function or subroutine procedure using an object variable.

[Public | Private | Delegate Function delegate_name([parameter_list]) As type
Or
[Public | Private] Delegate Sub delegate_name([parameter_list])

Prerequisites
None
Parameters
delegate_name
The name of the Delegate class to be defined.
parameter_list

A template for the parameters that are passed to the procedure when it
is called via a Delegate object. The number and type of the parameters
in this list must match whatever procedure is subsequently associated
with a Delegate object. The list may be empty if the procedure has no
parameters. The names of the parameters in this list are not important.
See the Function or Sub statement definitions for more details on
parameters lists.

type
For Function procedures, this is the type of the value returned by the
procedure associated with the Delegate object. This is not used if this
Delegate is for a Sub procedure.
Remarks

Each Delegate statement defines a different Class that contains a template for indirectly
executing a type of procedure. A program can create Delegate objects that contain
pointers to Function or Sub procedures. These Delegate objects allow the associated
Function or Sub procedures to be called indirectly.

Delegate statements are equivalent to Class declarations and may occur at the Module
level or Class level.

418

Statements

The AddressOf operator is used when creating new Delegate objects. When a new
Delegate object is created, the type of the procedure and the argument list of the
procedure must be identical to the parameter_list and type specified in the corresponding
Delegate statement. If a non-shared class method is specified, a reference to the object
associated with that method is saved in the Delegate object and used when the
Delegate is referenced.

Examples
Module GPL
Public Delegate Sub SubDel(ByVal arg As String, _
ByRef out As String)

Public Sub Test
Dim del (1) As SubDel
Dim ii As Integer
Dim ss As String
del (0) = New SubDel (AddressOf TypeA)
del (1) = New SubDel (*'TypeB™)
For ii =0 To 1

del(ii)("message', ss)
Console.WriteLine(ss)

Next ii
" Output is "A message', "B message"

End Sub

Public Sub TypeA(ByVal ins As String, ByRef outs As String)
outs = "A " & ins

End Sub

Public Sub TypeB(ByVal ins As String, ByRef outs As String)
outs = "B " & ins

End Sub

End Module

Module GPL2
Public Class D_Class
Public value As Double
Public Function Dcfun(ByVal arg As Integer) As String
Dim ss As String
ss = "Dcfun, value: " & CStr(value) & ', arg: " & CStr(arg)
Return ss
End Function
End Class

Public Delegate Function FunDel(ByVal arg As Integer) As String

Public Sub Test
Dim obj As New D_Class
Dim ss As String
Dim dc_del As FunDel
obj.value = 2
dc_del = New FunDel (AddressOf obj.Dcfun)

ss = dc_del(4)
Console.Writeline(ss) " Output is 'Dcfun, value: 2, arg: 4"
Console.Writeline(dc_del(4).Length) * Output is "23"
End Sub
End Module

See Also

Statements | Function Statement | Sub Statement

419

Statements

Dim Statement

This statement declares a variable for use in a class or procedure.

[Public | Private | Shared] Dim variable_name [, variable_name ...] As [New] type [
= [New] init]

Or

[Public | Private | Shared] Dim variable_name [, variable_name ...] As [New] type [
= [New] init], variable_name [, variable_name ...] As [New] type [= [New] init], ...

Prerequisites

e A Dim statement can only appear inside a class, procedure or a module.
e The Public and Private keywords cannot be used inside a procedure.
e The Shared keyword cannot be used at the module level.

Parameters
variable_name
The name of the variable to be declared.

In addition to the name, this field may include an array specification of
the form: variable_name(dim_1 [, dim_2 ...]), where dim_1 through
dim_4 may be blank or contain an Integer constant defining the
maximum index of the corresponding array dimension. GPL allows up to
four dimensions.

type
The type to be assigned to this variable. The type may be a primitive
type, the name of a built-in class, or the name of a user-defined class.
The primitive type keywords are:

Boolean, Byte, Double, Integer, Short, Single

If a class name is specified, the variable becomes an object variable.

init
An expression that specifies the initial value for the new variable. It does
not need to be a constant.

Remarks

If the Public or Private keywords are present, the Dim keyword may be omitted.

420

Statements

If the Shared keyword is specified, only a single copy of this variable is created. It exists
for all threads and persists even after the procedure in which is was defined has exited.

All variables declared at the module level are implicitly shared, even though the Shared

keyword is not allowed.

Shared variables within a procedure can only be accessed from within that procedure,
but their values persist and may be accessed by a subsequent procedure call.

If the Shared keyword is not specified on a Dim statement within a procedure, the
variable exists only within that procedure, and it is initialized each time the procedure
runs.

If the Shared keyword is not specified on a Dim statement within a class definition, a
separate copy of the variable exists in each object of that class type.

If more than one variable_name field is specified, no init clause may be specified.

The New clause can only be specified for objects. If a New keyword is specified
immediately following the As keyword, no initializer value may be specified.

If no init clause is specified, the default value for numeric variables is zero, and for object
variables is Nothing.

If an init clause is specified for a Shared variable, the initialization takes place once when
the main thread begins execution. If an init clause is specified for a non Shared variable,
the initialization takes place each time the defining procedure is executed, or each time a
new object of the class is created.

Examples

Dim ii As Integer

Dim ii As Integer = 10

Public ii As Integer = 10

Shared Dim count As Integer

Dim ii, jj As Integer, x As Double

Dim ii As Integer = 10, x As Double = 2.5
Dim start As Location

Dim start As New Location

See Also

Statements | Const Statement | ReDim Statement

421

Statements

Do...Loop Statements

These instructions bound a block of instructions that are repeatedly executed so long as
a specified expression evaluates to True or until the expression value becomes True.

Do While condition
[statements]
Loop

Or

Do Until condition
[statements]

Loop

-Or-

Do
[statements]

Loop While condition

-Or-

Do

[statements]
Loop Until condition

Prerequisites

None
Parameters
condition
Required expression that is interpreted as a True or False value. Any
expression that yields a numeric result can be specified, not just
Boolean expressions. Any expression that evaluates to <>0 is
interpreted as a True condition.
statements
Optional statement or list of statements that are repeatedly executed
within the control structure.
Remarks

422

Statements

This control structure either tests a condition at the start or the end of a block of
statements and repeatedly executes the statements so long as the condition is True or
until it becomes True. It can be used to implement program instruction loops.

For the Do While and Do Until forms of this control structure, the condition test is
performed prior to the execution of the statements. If the condition permits the loop to be
executed, the statements will be executed once. At the conclusion of the loop, the test is
repeated to determine if the statements should be executed again. So long as the
condition permits execution, the statements will be repeatedly executed. If not, execution
of the statements is terminated. In any case, if the condition does not permit the
execution of the loop on the first test, the statements are never executed.

In contrast, for the Loop While or Loop Until forms of this control structure, the
statements will always be executed at least one time. For these forms, the test is
performed at the conclusion of the execution of the statements. So long as the condition
permits execution, the statements will be repeated executed. However, if the condition
does not permit the execution of the loop on the first test, the statements will still have
been executed one time.

For all forms of this control structure, when the condition test is not satisfied, program
execution continues at the first statement following the Loop instruction.

If the While form of the condition test is specified, the condition is satisfied and execution
of the statements is permitted so long as the value of the condition is True. For the Until
form of the condition test, the condition is satisfied and execution is permitted until the
condition becomes True.

For more complex logic, multiple Do... Loop sequences can be nested to an arbitrary
depth and can be combined with other nested control structures. For example, a Do...
Loop can contain an If...Then...End If sequence which can in turn contain a
While...End While sequence.

Execution of the Do loop can be terminated by a number of different methods: the
condition can be set to a value that does not satisfied the test; execution can be explicitly
transferred to an instruction outside of the loop, e.g. by the execution of a GoTo
instruction; or an Exit Do instruction can be executed.

When an Exit Do statement is encountered, execution of the innermost Do...Loop
sequence is immediately terminated and execution continues at the instruction following
the Loop statement. There can be none or several Exit Do statements within each Do
loop.

Examples

Dim count As Integer

count = 10
Do " Embedded statements always execute at least once
If count = 5 Then
Exit Do " Prematurely stops Do loop
End If
count -= 1 " Same as “count = count-1”

Loop Until count <= 0

See Also

423

Statements

Statements | For...Next Statements | GoTo Statements | If...Then...Else...End If Statements |
While...End While Statements

424

Statements

Else, ElselF Statements

These instructions are used within an If...Then...Else...End If series of statements to
conditionally execute alternative blocks of instructions.

If condition Then
[statements]

[Elself elseif_condition Then
[elseif_statements]]

[Elself elseif_condition Then
[elseif_statements]]

[Else
[else_statements]]

End If

Prerequisites
Can only be specified within an If...Then...End If series of statements.
Remarks

Please see the documentation on the If...Then...Else...End If Statements for an
explanation on the use of the Else and Elself instructions.

See Also

Statements | If...Then...Else...End If Statement

425

Statements

End Statements

These statements mark the end of control structures and major project elements such as
procedures or modules.

End Class
Or

End Function
Or

End Get

-Or-

End If

-Or-

End Module
-Or-

End Property
Or

End Select
Or

End Set

Or

End Sub

-Or-

End While

Prerequisites

Must always follow and match the type of control structure or procedure that is
referenced.

Remarks

Each of the forms of the End statement are qualified by the type of control structure or
procedure being terminated. Please see the documentation on the related statements
and program elements for information on the End statements, e.g. see the While...End
While Statements for information on the End While and see Sub for information on End
Sub.

See Also

Statements | Function Statement | If...Then...Else...End If Statements | Module Statement
Select...Case Statements | Sub Statement | While...End While Statements

426

Statements

Exit Statements

These statements terminate the execution of a block of instructions within the innermost
control structure of a specified type or a procedure. Execution is continued after the end
of the control structure or the call to the procedure.

Exit Do

Or

Exit For

Or

Exit Function
-Or-

Exit Property
-Or-

Exit Select
-Or-

Exit Sub

Or

Exit Try

Or

Exit While

Prerequisites
Can only be specified within the control structure or procedure type that is referenced.

Remarks

Each of the forms of the Exit statement are qualified by the type of control structure or
procedure being terminated. Please see the documentation on the specific statements
and program elements for information on the Exit statements, e.g. see the While...End
While Statements for information on the use of Exit While and Sub for the use of Exit
Sub.

See Also

Statements | Do... Loop Statements | Exit Try Statement | For...Next Statements | Select...Case
Statements | While...End While Statements

427

Statements

For...Next Statements

These instructions bound a block of instructions that are repeatedly executed a specified
number of times.

For variable = initial_value To final_value Step increment
[statements]
Next variable2

Prerequisites
None

Parameters
variable

Required control variable that is incremented each loop and whose value
determines when looping is to be terminated. The variable can be any
numeric type, i.e.. Byte, Integer, Short, Single or Double. Array
variables as well as object and structure fields are also permitted.
However, object and structure properties are not permitted.

initial_value

Required expression that is evaluated once when the For loop is first
entered. The variable is set to this initial_value and has this value at the
start of the first pass through the execution of the statements.

final_value

Required expression whose value is tested against the variable to
determine when loop execution is to terminate. This expression is
evaluated once when the For statement is executed and its value is
saved for subsequent tests by the Next statement. Therefore, this value
will not change once the For loop is entered.

increment

Optional expression that determines the amount by which the variable is
changed each loop and also whether the variable is tested for being
greater than or less than the final_value as the termination condition.
This expression is evaluated once when the For statement is executed
and its value is saved for subsequent tests by the Next statement.
Therefore, this value will not change once the For loop is entered. If this
expression is not specified, a step of 1 is assumed.

428

Statements

statements

Optional statement or list of statements that are repeatedly executed
during each For loop.

variable2

Optional control variable, which if specified, must exactly match the
control variable in the matching For statement. This is only used when
the program is compiled (and not at runtime) to ensure that the Next and
For statements match.

Remarks

This control structure loops and repeatedly executes the statements a specified number
of times (iterations). It can be used to implement program instruction loops and is
generally more efficient that the other means of looping.

The For statement begins execution by evaluating its arguments and saving their values
for future potential use by the matching Next statement. It then sets the value of the
control variable equal to the initial_value. If the variable’s value does not exceed the
final_value, then the statements are executed for the first time. If the variable’s value
does exceed the final_value, the statements are skipped and execution continues at the
first statement beyond the matching Next.

If the statements are executed, execution proceeds until the Next instruction is
encounter. When the Next statement is executed, the increment is added to the variable
and its value is compared again to the final_value. So long as the final_value is not
exceeded, the for_loop_statements are executed again and the process is repeated.
Otherwise, execution continues at the statement following the Next.

If the increment is a positive number, looping terminates when the variable’s value is
greater than the final_value. If negative, looping terminates when the variable’s value is
less than the final_value.

For more complex logic, multiple For...Next sequences can be nested to an arbitrary
depth and can be combined with other nested control structures. For example, a For loop
can contain an If...Then...End If sequence which can in turn contain another For...Next
sequence.

Execution of the For loop can be terminated by a number of different methods: the
variable’s value can exceed the final_value; execution can be explicitly transferred to an
instruction outside of the loop, e.g. by the execution of a GoTo instruction; or an Exit For
instruction can be executed.

When an Exit For statement is encountered, execution of the innermost For...Next
sequence is immediately terminated and execution continues at the instruction following
the Next. There can be none or several Exit For statements within each For loop.

Examples

Dim count As Integer
For count = 1 To 10 " Plan to execute 10 loops
If count = 5 Then

429

Statements

Exit For " Prematurely stops For on 5 th loop
End If
Next count " count is optional in the Next

See Also

Statements | Do... Loop Statements| GoTo Statements | If...Then...Else...End If Statements |
While...End While Statements

430

Statements

Function Statement

This statement begins a user-defined function procedure. It specifies the function return
data type and any parameters that are passed when it is called.

[Public | Private | Shared] Function function_name([parameter_list]) As type

Prerequisites

e Procedures cannot be declared inside of other procedures.
e Procedures can only be declared within modules or classes.

Parameters
function_name
The name of function to be defined.

parameter_list

A list of parameters that are passed to the procedure when it is called.
Each parameter appears as a locally defined variable and is associated
with a value when the procedure is called. The caller must provide
arguments that match the number and type of the parameters specified
in this statement.

The list may be empty if the function has no parameters. Multiple
parameter list elements are separated by ",". Each element has the form:

[ByVal | ByRef | parameter_name As type
parameter_name

The name of the variable associated
with this parameter. This name is known
only within the procedure being defined.

type

The type of this parameter. The type
may be either a primitive type or the
name of a built-in class. The primitive
type keywords are:

Boolean, Byte, Double, Integer, Short,
Single

431

Statements

If a class name is specified, the variable
becomes an object variable.

Either ByVal or ByRef can be specified, but not both. If neither is
specified, the default is ByVal. A ByVal parameter receives a copy of
argument value from the caller. The local procedure can change the
value without affecting the caller’s value. A ByRef parameter references
the caller’s value directly. Any changes to a ByRef parameter in the
called routine are reflected in the calling routine.

Since object variables always deal with pointers to object values, the
called routine can always change an object value, even when passed
using a ByVal parameter.

type
The type of the value returned by this function. The type may be a
primitive type, the name of a built-in class, or the name of a user-defined
class. The primitive type keywords are:
Boolean, Byte, Double, Integer, Short, Single
If a class name is specified, the returned type is an object.
Remarks

A Function procedure returns a value that can be used within an expression where a
value of the proper type is allowed. A Function can also be used with a Call statement or
by itself as a statement when the returned value is not needed.

A Function definition must always end with an End Function statement.

A Function procedure exits when it encounters the End Function statement, an Exit
Function statement, or a Return statement.

The returned value of function is specified by assigning a value to a variable named
function_name, or by a Return statement.

If Public is specified, this procedure can be called from other modules or classes.
Otherwise it can only be called from within the module or class where it is defined.

The Shared keyword can only be used within a class definition. If it appears, the
Function is associated with the entire class rather than with a particular object of that
class type.

Examples

Function add_function (x As Integer, y As Integer) As Integer
add_function = x+y
End Function

a = add_function(4, 5) * 2 " Variable a gets value 18

432

Statements

See Also

Statements | Delegate Statement | End Function Statement | Exit Function Statement | Return
Statement | Sub_Statement

433

Statements

Get Statement

This statement begins a Get procedure block within a Property procedure definition.

Get

Prerequisites

e This statement can only appear within a Property definition.
e The Property definition that contains this statement must not specify the
WriteOnly attribute.

Parameters
None
Remarks
The Get procedure block must always end with an End Get statement.

When a procedure gets the containing Property, the Get procedure is executed. It is up
to that procedure to retrieve or compute the property value and return it.

The returned value of the Property is specified by assigning a value to a variable with the
same name as the Property or by a Return statement.

Examples
Class cc
Private sizex2 As Integer = 44
Public ReadOnly Property size As Integer
Get
Return sizex2/2
End Get
End Property
End Class
Dim obj As New cc
Console.WriteLine(obj.size) " Displays value 22
See Also

Statements | Property Statement | Set Statement

434

Statements

GoTo Statement

This statement performs an unconditional branch and continues execution at a specified
labeled instruction.

GoTo label

Prerequisites

None
Parameters
label
Required program instruction label. A label must conform to the naming
conventions for either be a valid variable name (e.g. label3) or an integer
literal (e.g. 1000).
Remarks

This instruction alters the sequence of program statement execution by setting the
label’ed statement as the next instruction to be executed.

The referenced label’ed instruction must be in the same procedure as the GoTo
instruction and can be on an instruction before or after the GoTo instruction. You should
not use a GoTo to jump from the outside of a control structure (e.g. a For...Next or
If...Then...Else...End If) to within a control structure.

To label an instruction, specify the label name followed by a colon (:) followed by any
standard instruction.

In general, GoTo instructions can make code difficult to read and debug. So, wherever
possible software should be written to make use of the other control structures, e.g.
If...Then...Else...End If, While...End While.

Examples

Dim too_big As Boolean, angle As Single
too_big = False
angle = 175.5
IT angle > 360 Or angle < -360 Then
too_big = True
GoTo Error_Exit " An Else clause would be better,
End If " but this shows how to use GoTo
my_routine(angle)

Error_Exit:

435

Statements

See Also

Statements | Do... Loop Statements | For...Next Statements | If...Then...Else...End If Statements
| While...End While Statements

436

Statements

If.. Then...Else...End If Statements

A series of statements that conditionally execute a block of embedded statements based
upon the value of an expression.

If condition Then
[statements]

[Elself elseif_condition Then
[elseif_statements]]

[Elself elseif_condition Then
[elseif_statements]]

[Else
[else_statements]]

End If

Or

If condition Then statement

Prerequisites

None
Parameters

condition
Required expression that is interpreted as a True or False value. Any
expression that yields a numeric result can be specified, not just
Boolean expressions. Any expression that evaluates to <>0 is
interpreted as a True condition.

statements

Optional statement or list of statements that are executed if the condition
evaluates to True.

elseif _condition

Expression that is required if an optional Elself clause is specified. Any
expression that yields a numeric result can be specified, not just
Boolean expressions. Any expression that evaluates to <>0 is
interpreted as a True condition.

elseif statements

437

Statements

Optional statement or list of statements that are executed if the
associated elseif condition evaluates to True.

else_statements

Optional statement or list of statements that are executed if the Else
clause is present and the precedingcondition and elseif_condition values
all test False.

Remarks

This control structure tests one or more expressions and conditionally executes at most
one block of statements or a single statement. It can be used to implement simple “either-
or” types logic or more complex decisions based upon multiple conditions with multiple
possible outcomes.

The If...Then statement begins by first testing the value of the condition. If the condition
is True, the statements are executed, after which, all of the following program instructions
are skipped until the closing End If is encountered. If the condition is False, the
statements are skipped and processing continues at the first Elself, Else, or End If
clause that follows the statements. Any condition that evaluates to <>0 will be interpreted
as a True value.

An arbitrary number of Elself clauses can optionally follow the statements and precede
the Else. If the condition is False, the first Elself clause is processed by evaluating its
elseif_condition. If its elseif _condition is True, its elseif_statements are executed after
which all of the following program instructions are skipped until the closing End If is
encountered. If its elseif_condition is False, its elseif_statements are skipped and
processing continues at the next Elself, Else, or End If clause that follows the
elseif_statements.

An If...Then group of statements can contain a single optional Else statement. If the
condition and all optional elseif _conditions have tested false, the optional
else_statements will be executed.

For more complex logic, multiple If...Then...End If statements can be nested to an
arbitrary depth and can be combined with other nested control structures. For example, a
For loop can contain an If...Then...End If sequence which can in turn contain another
If...Then...End If sequence.

Examples

Dim a As Boolean, b As Integer, ¢ As Single

a = True
b =20
ITf a AND (b > 10) Then " This condition evaluates to True
c = 3.14159 " This assignment will be executed
Else
c=0 " This assignment will be skipped
End If
See Also

Statements | Do... Loop Statements | For...Next Statements | GoTo Statements | Select...Case
Statements | While...End While Statements

438

Statements

Loop Statements

These instructions mark the end of a Do...Loop block of instructions and in some
instances also specify the loop termination condition.

Loop

Or

Loop Until condition

Or

Loop While condition
Prerequisites

Must always follow and match a Do statement within a procedure.

Remarks

Please see the documentation on the Do...Loop Statements for an explanation of the
use of the Loop instructions.

See Also

Statements | Do... Loop Statement

439

Statements

Module Statement

This statement begins a user-defined module section. All variable definitions and
procedures must be inside a Module or Class definition.

Module module_name

Prerequisites
Modules can only be declared at the top-level of a file.
Parameters
module_name
The name of module that is being started.
Remarks
A Module must always end with an End Module statement.

A Module contains variable, procedures or class definitions. There can be multiple
modules defined in a single file.

All variables, procedures and classes defined within a module can be accessed
anywhere in that module. Only Public variables, procedures and classes can be
accessed outside the module.

Examples

Module main_module
Public Dim Start As Location * All modules can access Start
Private Dim x1 As Location ® Only this module can access x1

* All modules can access add_function
Public Function add_function (x As Integer,y As Integer) As Integer
add_function = x+y

End Function
End Module

See Also

Statements | Class Statement | Dim Statement | End Module Statement | Function Statement
Sub Statement

440

Statements

Next Statements

This instruction marks the end of a For...Next block of instructions.

Next variable

Prerequisites
Must always follow and match a For statement within a procedure.
Remarks

Please see the documentation on the For...Next Statements for an explanation of the
use of the Next instruction.

See Also

Statements | For...Next Statements

441

Statements

Property Statement

This statement begins a user-defined Property procedure. It specifies the return data
type and any parameters that are passed when it is called.

[Public | Private | Shared | ReadOnly | WriteOnly | Property property_name ([
parameter_list]) As type)

Prerequisites
e Properties can only be declared within class definitions.
Parameters
property_name
The name of the Property to be defined.
parameter_list

A list of parameters that are passed to the Property when it is called.
Properties often have an empty parameter list.

Each parameter appears as a locally defined variable and is associated
with a value when the procedure is called. The caller must provide
arguments that match the number and type of the parameters specified
in this statement.

The list may be empty if the Property has no parameters. Multiple
parameter list elements are separated by ",". Each element has the form:

[ByVal | ByRef] parameter_name As type
parameter_name

The name of the variable associated
with this parameter. This name is known
only within the procedure being defined.

type

The type of this parameter. The type
may be a primitive type, the name of a
built-in class, or the name of a user-
defined class. The primitive type
keywords are:

442

Statements

Boolean, Byte, Double, Integer, Short,
Single

If a class name is specified, the variable
becomes an object variable.

Either ByVal or ByRef can be specified, but not both. If neither is
specified, the default is ByVal. A ByVal parameter receives a copy of the
argument value from the caller. The local procedure can change the
value without affecting the caller’s value. A ByRef parameter references
the caller’s value directly. Any changes to a ByRef parameter in the
called routine are reflected in the calling routine.

Since object variables always deal with pointers to object values, the
called routine can always change an object value, even when passed
using a ByVal parameter.

type
The type of the value returned by this Property. The type may be either
a primitive type, the name of a built-in class, or the name of a user-
defined class. The primitive type keywords are:
Boolean, Byte, Double, Integer, Short, Single
If a class name is specified, the returned type is an object.
Remarks

Property procedures may set a value or get (return) a value.

Property procedures that set a value must include a set procedure block that begins with
a Set statement and ends with an End Set statement. The property_name and
parameter_list may be used on the left-hand side of an assignment statement.

A Property procedure that gets a value must include a get procedure block that begins
with a Get statement and ends with an End Get statement. A Get Property may be used
just like a Function within an expression or on the right-hand side of an assignment
statement, where a value of the proper type is allowed.

A Property definition must always end with an End Property statement.

If the Property contains only a get procedure, the ReadOnly keyword must be specified.
If the Property contains only a set procedure, the WriteOnly keyword must be specified.

A property procedure exits when it encounters the End Property statement, an Exit
Property statement or a Return statement.

If Public is specified, this procedure can be called from other modules or classes.
Otherwise it can only be called from within the class where it is defined.

443

Statements

If the Shared keyword appears, the property is associated with the entire class rather
than with a particular object of that class type.

Examples

Class cc
Private size_value As Integer

Public Property size As Integer " Set size, clip value at 10
Set (value As Integer)
IT value > 10 Then
value = 10
End If
size_value = value
End Set
Get
Return size_value

End Get
End Property
End Class
Dim ij As New cc
obj.size = 20 " Sets size_value
Console.WriteLine(obj.size) * Displays 10

See Also

Statements | Get Statement | Set Statement

444

Statements

ReDim Statement

This statement increases or decreases an array size by changing the array's upper
bounds.

ReDim [Preserve] variable_name (dim_1[, dim_2 ...])

Prerequisites

The variable_name parameter must already be declared to be an array, with the same
number of dimensions, in a Dim, Public, or Private statement.

Parameters
variable_name
The name of the array variable that is to have its size changed.
dim_1,dim_2, ...

The new upper bounds for each dimension of the array. ReDim cannot
change the number of dimensions, so the number of dimensions must
match the original array declaration.

If the Preserve keyword is specified, all dimensions except the last
(right-most) must remain the same.

Remarks

The previous contents of an array are lost when an ordinary ReDim statement is
executed. If the Preserve keyword is specified, the previous contents of the array are
preserved.

Examples

Dim array(3,4) As Integer
Dim array2() As String

ReDim array(4,6)
ReDim array2(10)

ReDim array2(2,3) " Invalid, cannot change # of dimensions
ReDim Preserve array(3, 10)

ReDim Preserve array(4, 10) ° Invalid, can only change last dimension
See Also

Statements | Dim Statements

445

Statements

Return Statement

This statement causes a user-define procedure to return control the the calling procedure
and optionally return a value.

Return [value]

Prerequisites

Return can only appear within a procedure.

Parameters
value
The value to be returned to the calling procedure if the current procedure
is a Function. The value field must be specified in a Function procedure.
It must not be specified in Sub procedure.
Remarks

The current procedure exits when it encounters a Return statement and execution
continues with the calling procedure. If there is no calling procedure, the current thread is
terminated with success.

In a function procedure, a Return is equivalent to assigning a value to the function-name
variable followed by an Exit Function statement.

Examples

Function add_function (x As Integer, y As Integer) As Integer
Return x+y
End Function

Sub add_sub (x As Integer, y As Integer, ByRef result As Integer)
result = x+y
Return

End Sub

See Also

Statements | Exit Function statement | Exit Sub statement

446

Statements

Select...Case...End Select Statements

Evaluates a target expression, compares its value to a series of values and executes the
block of statements associated with the first matching value.

Select match_value
Case test_expression, ..., test_expression
case_statements
[Case test_expression, ..., test_expression
[case_statements]]
[Case Else

[else_statements]]
End Select

Prerequisites
None
Parameters
match_value

Required numeric or String expression that defines the value to be
matched.

test_expression

Required numeric or String expression that is specified with each Case
statement to define the values to be compared to the

match_value. Each Case statement must have at least one
test_expression, but can have more than one.

case_statements

Optional statement or list of statements that are executed if any of the
test_expressions for the associated Case statement match the
match_value.

else_statements

Optional statement or list of statements that are executed if the Case
Else statement is present and none of the test_expressions match the
match_value.

Remarks

447

Statements

This control structure executes one of several blocks of statements based upon matching
a numeric or String expression value. This control structure is similar to the
If...Then...Elself statements in that a series of values are compared to determine the
statements that are executed next. However, this control structure is more efficient and
convenient than a series of If statements if a single value is to be compared to multiple
possible values.

The Select statement defines the value to be matched. The match_value is evaluated
once and then sequentially tested against each test_expression specified in the following
Case statements. When the first matching test_expression value is found, the associated
case_statements are executed. Following the execution of the appropriate
case_statements, execution continues at the statement following the End Select. If no
test_expression is matched and a Case Else is present, the else_statements are
executed. If no test_expression is matched and a Case Else is not defined, none of the
case_statements are executed and execution continues after the End Select

The match_value and each of the test_expressions can be either a numeric or String
expression and can evaluate to any of the basic arithmetic data types (e.g. integer, real
number, byte) or a String type. If the data type of a test_expression does not match that
of the match_value, it is automatically converted to the correct data type. If a String
comparison is performed, the comparison is case sensitive, e.g. "A" and "a" are
considered different.

A Select sequence must contain at least one Case or Case Else statement. Any
number of additional Case statements can be included, but only one Case Else is
permitted and the Case Else must occur just prior to the End Select.

If an Exit Select is encountered in either the case_statements or else_statements,
execution of the remaining statements in the block is skipped. Execution continues at the
instruction following the End Select.

Examples

Dim target, sl, s2 As String
target = "ab"
sl = "a"
s2 = "pb"
Select target
Case s1, "dd"
Console._Writeline(*"Wrong'™)
Case s2
Console.Writeline("'Wrong')
Case sl & s2
Console._Writeline("Right')
Case Else
Console.Writeline(""Wrong'™)
End Select

See Also

448

Statements | Do... Loop Statements | For...Next Statements | GoTo Statements

If...Then...Else...End If Statements | While...End While Statements

Statements

Set Statement

This statement begins a Set procedure block within a Property procedure definition.
Set (parameter_name As type)

Prerequisites

e This statement can only appear within a Property definition.
e The Property definition that contains this statement must not specify the
ReadOnly attribute.

Parameters
parameter_name

The name of the parameter that contains the new value to which the
property is being set.

type

The type of the parameter_name parameter. This type must be identical
to the type of the Property that contains the Set statement.

Remarks
The Set procedure block must always end with an End Set statement.
Unlike VB.NET, the clause (parameter_name As type) must always be specified.

When a procedure sets the containing Property, the new value for the property is copied
to the parameter_name variable, and the Set procedure is executed. It is up to that
procedure to use or save the new value as desired.

Examples

Class cc
Private size_value As Integer
Public WriteOnly Property size As Integer " Set size, clip value at 10
Set (value As Integer)
If value > 10 Then
value = 10
End If
size_value = value
End Set
End Property
End Class

449

Statements

Dim obj As New cc
obj.size = 20 " Sets size_value

See Also

Statements | Property Statement | Get Statement

450

Statements

Sub Statement

This statement begins a user-defined subroutine procedure. It specifies any parameters
that are passed when it is called.

[Public | Private | Shared] Sub subroutine_name([parameter_list])

Prerequisites

e Procedures cannot be declared inside of other procedures.
e Procedures must be declared within modules or classes.

Parameters
subroutine_name
The name of the subroutine to be defined.

parameter_list

A list of parameters that are passed to the procedure when it is called.
Each parameter appears as a locally defined variable and is associated
with a value when the procedure is called. The caller must provide
arguments that match the number and type of the parameters specified
in this statement.

The list may be empty if the subroutine has no parameters. Multiple
parameter list elements are separated by “,’. Each element has the form:

[ByVal | ByRef | parameter_name As type
parameter_name

The name of the variable associated
with this parameter. This name is known
only within the procedure being defined.

type

The type of this parameter. The type
may be either a primitive type or the
name of a built-in class. The primitive
type keywords are:

Boolean, Byte, Double, Integer, Short,
Single

451

Statements

If a class name is specified, the variable
becomes an object variable.

Either ByVal or ByRef can be specified, but not both. If neither is
specified, the default is ByVal. A ByVal parameter receives a copy of
argument value from the caller. The local procedure can change the
value without affecting the caller’s value. A ByRef parameter references
the caller’s value directly. Any changes to a ByRef parameter in the
called routine are reflected in the calling routine.

Since object variables always deal with pointers to object values, the
called routine can always change an object value, even when passed
using a ByVal parameter.

Remarks

A Sub procedure does not return a value and cannot be used within an expression. A
Sub procedure can be used with a Call statement or by itself as a statement.

A Sub definition must always end with an End Sub statement.

A subroutine procedure exits when it encounters the End Sub statement, an Exit Sub
statement, or a Return statement.

If Public is specified, this procedure can be called from other modules or classes.
Otherwise it can only be called from the module or class where it is defined.

The Shared keyword can only be used within a class definition. If it appears, the
subroutine is associated with the entire class rather than with a particular object of that
class type.

Examples

Sub add_sub (x As Integer, y As Integer, ByRef result As Integer)
result = x+y
End Sub

add_sub(4, 5, a) " Variable a gets value 9
See Also

Statements | Delegate Statement | End Sub Statement | Exit Sub Statement | Return Statement
Sub Statement

452

Statements

While...End While Statements

These instructions bound a block of instructions that are repeatedly executed so long as
a specified expression evaluates to True.

While condition
[statements]
End While

Prerequisites

None
Parameters
condition
Required expression that is interpreted as a True or False value. Any
expression that yields a numeric result can be specified, not just
Boolean expressions. Any expression that evaluates to <>0 is
interpreted as a True condition.
statements
Optional statement or list of statements that are repeatedly executed so
long as the condition evaluates to True.
Remarks

This control structure tests an expression and repeatedly executes a block of statements.
It can be used to implement program instruction loops.

The While statement begins execution by testing the value of the condition. If the
condition is True, the statements are executed. When the End While instruction is
encountered, the condition is tested again. If the condition is still True, the statements are
executed once again. This process is repeated until the condition tests False or the
statements explicitly execute an instruction that continues execution outside of the loop. If
the condition ever tests False, execution continues at the instruction following the End
While.

If the condition is False when the While first begins execution, the statements are
skipped, in which case, the statements are not executed even once.

For more complex logic, multiple While...End While sequences can be nested to an
arbitrary depth and can be combined with other nested control structures. For example, a

453

Statements

While loop can contain an If...Then...End If sequence which can in turn contain another
While...End While sequence.

Execution of the While loop can be terminated by a number of different methods: the
condition can be set False prior to the execution of the End While statement; execution
can be explicitly transferred to an instruction outside of the loop, e.g. by the execution of
a GoTo instruction; or an Exit While instruction can be executed.

When an Exit While statement is encountered, execution of the innermost While...End
While sequence is immediately terminated and execution continues at the instruction
following the End While. There can be none or several Exit While statements within
each While loop.

Examples

Dim count As Integer
count = 10

While count > 0 " This condition initially evaluates to True
If count = 5 Then
Exit While * Prematurely stops While loop
End If
count -= 1 " Same as “count = count-1"
End While
See Also

Statements | Do... Loop Statements | For...Next Statements | GoTo Statements
If...Then...Else...End If Statements

454

String Summary

Strings

The following pages provide detailed information on the properties, methods and

functions that are available to assist in manipulating String variables. Internally, Strings

are implemented using much of the same structure and procedures as other built-in
Classes. Therefore, in addition to providing classic Basic functions for operating on
Strings, e.g. Len, String variable properties and methods are also available for

performing many of the same operations.

A number of easy-to-use functions are provided for converting between String values
and numerical values, e.g. CStr, CDbl, Cint, Hex . Each of these built-in operations is
described in the section on Functions.

The table below briefly summarizes the properties and methods of String variables that

are described in greater detail in the following section.

Member Type Description
Compares the values of two Strings in
String.Compare Method either a case sensitive or case insensitive
manner.
Searches for an exact match of a substring
string.Index Of Method within the string variable and returns the
starting position if found (0-n).
. Returns the number of characters stored in
string.Length Property : :
a String variable.
Divides the string variable value into a
. . series of substrings based upon a specified
string. Split Method separator character and returns the array of
substrings.
Returns a substring of the string variable
string.Substring Method starting at a specific character position and
with the specified length.
string. ToLower Method Returns a copy of the string with all lower
FLrf ol el case characters.
<trina. ToUbper Method Returns a copy of the string with all upper
e case characters.
string. Trim Method Trims off characters or white space from
el 0 the start and end of a String variable value.
<trina. TrimEnd Method Trims off charaqters or.wh|te space from
el R Re the end of a String variable value.
String. TrimStart Method Trims off characters or white space from

the start of a String variable value.

455

Strings

456

The following table summarizes the String functions that are also described in greater

detail in the subsequent section.

Function

Description

Asc (string)

Converts the first character of a String to its
equivalent ASCII numerical code.

Chr (expression)

Given a numerical ASCII code, a String that
consists of the equivalent ASCII character is
returned.

Format (expression, format_s)

Converts a numerical value to a String value based
upon a specified output format specification.

FromBitString (string, type,
big_endian)

Extracts a number that has been packed in its
internal bit format into a String and returns the value
of the number.

Instr (start, string_t, string_s)

Searches for an exact match of a substring within a
String expression and returns the starting position if
found (1-n).

L Case (string)

Returns a String value that has been converted to
lower case.

|Len (string)

Returns the number of characters in a String.

Mid (string, first, length)

Returns a substring of the string starting at the first
character position and consisting of length number of
characters.

ToBitString (expression, type,

big_endian)

Converts the value of an expression to a specific
numeric type and returns the internal bit
representation of the number packed into a String
value.

UCase (string)

Returns a String value that has been converted to

upper case.

Strings

String.Compare Method

Compares two String expressions either taking into consideration or ignoring the case of
the characters and returns an indication of the results.

...String.Compare(string_a, string_b, ignore_case)

Prerequisites

None
Parameters
string_a
A required String expression. The String expression can be a String
variable, constant, function or method, or a concatenation of these
String elements.
string_b
A required String expression. The String expression can be a String
variable, constant, function or method, or a concatenation of these
String elements.
ignore_case
An optional numeric expression. If the value of this expression is True,
the comparison is performed ignoring the case of the characters, i.e. "A"
will be equal to "a". If this value is False or not specified, the comparison
is performed in a case-sensitive manner.
Remarks

This shared method compares the values of two String expressions and returns an
indication of the results of the comparison. Depending upon the value of ignore_case, the
comparison is either performed taking into account the case of characters or ignoring the
case of characters. The returned value is interpreted as follows:

String Relationship Returned result
string_a > string b >0
string_a = string_b =0
string_a < string_b <0

457

Strings

String comparisons can also be performed using the standard comparison operators, i.e.
=, <>, <, >, <=, >=. When two Strings are compared using the comparison operators, the
comparison is always performed taking into consideration the case of the characters.

Examples
Dim stg As String " Create a new string variable
Dim ii As Integer

stg = "aBcdef"
ii = String.Compare(stg, "abcdef') " i1 will be set <0

See Also

Strings

458

Strings

string.IndexOf Method

Searches for an exact match of a substring within a string variable and returns the
starting position if found (0-n).

...string.IndexOf(string_s, start)

Prerequisites

None
Parameters
string_s
A required String expression. The String expression can be a String
variable, constant, function or method, or a concatenation of these
String elements. This specifies the substring value that must be found
within the string value.
start
An optional numeric expression. This value specifies the first character
position that is tested in the string. If undefined, match testing begins
with the first character in string. Unlike the Instr function, a 0 specifies
the first character position in the string.
Remarks

This method searches the value of the string variable for an exact, case sensitive match
to the specified string_s value. The search begins at the character specified by start and
continues with successive characters until either the first match is found or the end of the
string is encountered.

Depending upon the outcome of the search, the following values are returned by this

method.
String Values Returned Value
string_s is found in string Character position where the match begins. 0
indicates matched started at the first character
of string.
string has a zero length -1
string_s has a zero length start value
string_s not found in string -1

459

Strings

Examples

Dim stg_a As String " Create string variable
Dim pos As Integer
stg_a = "aBcDeFgHiJKLmNoPgRsTuVwXyZaBcDeFgHiJK"

pos = stg_a.IndexOF("'Fg'™") " pos will be set to 5

pos = stg_a.- IndexOF("'FG™) " pos will be set to -1

pos = stg_a.IndexOf("'Fg", 10) " pos will be set to 31
See Also

Strings | Instr Function

460

Strings

string.Length Property

Returns the count of the number of characters stored in a String variable.
...string.Length

Prerequisites
None

Parameters
None

Remarks

Returns the Integer count of the number of characters that are stored in a String
variable. If the value of the String is empty, a count of 0 is returned.

Examples

Dim stg As String " Create a new string variable
Dim ii As Integer

stg = '"123456"

il = stg.Length " i1 will be set to 6

See Also

Strings | Len Function

461

Strings

string.Split Method

Divides a String variable value into a series of substrings based upon a specified
separator character and returns the array of substrings.

...string.Split(separator_string)

Prerequisites
None
Parameters
separator_string

A required String expression. The String expression can be a String
variable, constant, function or method, or a concatenation of these
String elements. The first character of this expression defines the
separator character. For example, to split a line containing substrings

separated by commas, this String should be set to ",".
Remarks

This method scans the value of the string variable searching for the specified separator
character. Each time the separator is found, the text after the previous separator (or from
the start of the string if this is the first separator) and up to the new separator is taken as
a substring and stored in a String array that is returned by this method. If the string
variable does not contain a separator character, the entire contents of the string are
copied to first element of the output array.

Examples

Dim stg_arr() As String * Create array string variable

Dim stg As String

stg = 1,2 ,this is the 3rd string”

stg_arr = stg.Split(”,") " stg_arr(0)
" stg_arr(l)
" stg_arr(2)

wyn
"y
"this is the 3rd string”

See Also

Strings

462

Strings

string.Substring Method

Extracts and returns a substring of the string variable starting at a specific character
position and with a specified length.

...string.Substring(first_pos, length)

Prerequisites

None
Parameters
first pos
A required numeric expression. This specifies the position of the first
character to be extracted and returned. Note, unlike the Mid function,
the first character position is 0 rather than 1.
length
An optional numeric expression. This value specifies the number of
characters to be copied into the returned value. If length is O, the
returned substring will be empty. If length is not specified, all of the
remaining characters in the string starting at the first_pos will be copied.
Remarks

This method extracts a substring from the value of a String variable and returns the

results. The substring is specified by its starting character position in the string and the
number of characters to be extracted.

Examples

Dim stg_a, stg_result As String " Create two string variables
stg_a = "aBcdef"

stg_result = stg_a.Substring(3, 2) * stg_result will be set to "de"

See Also

Strings | Mid Function

463

Strings

string.ToLower Method

Returns a copy of a String value where all of the alphabetic characters have been
changed to lower case.

...string. ToLower

Prerequisites
None

Parameters
None

Remarks

This method copies the value of a String variable and converts all of the alphabetic
characters to lower case while leaving all of the non-alphabetic characters unchanged.

Examples
Dim stg_a, stg_b As String " Create two string variables
stg_a = "aBcDeF"
stg_b = stg_a.TolLower " stg_b set to "abcdef"

See Also

Strings | LCase Function | string.ToUpper | UCase Function

464

Strings

string.ToUpper Method

Returns a copy of a String value where all of the alphabetic characters have been
changed to upper case.

...string. ToUpper

Prerequisites
None

Parameters
None

Remarks

This method copies the value of a String variable and converts all of the alphabetic
characters to upper case while leaving all of the non-alphabetic characters unchanged.

Examples
Dim stg_a, stg_b As String " Create two string variables
stg_a = "aBcDeF"
stg_b = stg_a.ToUpper " stg_b set to "ABDCEF"

See Also

Strings | LCase Function | string.ToLower | UCase Function

465

Strings

string.Trim Method

Trims off characters or white space from the start and end of a String variable value.
...string. Trim(trim_chars)

Prerequisites

None
Parameters
trim_chars
An optional String expression. The characters of this expression define
the individual characters that are to be trimmed from the start and the
end of the string. If a trimming character String is not specified, any
white space (e.g. space and/or horizontal tab characters) is trimmed off.
Remarks

This method trims off any occurrence of the characters specified in the trim_chars
expression from the associated string variable and returns the resulting String value. If
multiple trim characters are present in the string, trimming continues until a non-trim
character is encountered. Trimming is performed at both the start and at the end of the
string variable.

Examples

Dim stg_a, stg_t As String
stg_a = "112211this is a test221122"

Create string variables

stg_t = stg_a.Trim("'12") " stg_t set to "this is a test"
stg_t = stg_a.TrimStart(*'21") " stg_t set to "this iIs a test221122"
stg_t = stg_a.TrimEnd(*'123") " stg_t set to "112211this is a test”
stg_a = another test "
stg_t = stg_a.Trim(Q) " stg_t set to "another test"

See Also

Strings | string.TrimEnd| string. TrimStart

466

Strings

string. TrimEnd Method

Trims off characters or white space from the end of a String variable value.
...string. TrimEnd(trim_chars)

Prerequisites

None
Parameters
trim_chars
An optional String expression. The characters of this expression define
the individual characters that are to be trimmed from the end of the
string. If a trimming character String is not specified, any white space
(e.g. space and/or horizontal tab characters) is trimmed off.
Remarks

This method trims off any occurrence of the characters specified in the trim_chars
expression from the associated string variable and returns the resulting String value. If
multiple trim characters are present in the string, trimming continues until a non-trim
character is encountered. Trimming is performed at the end of the string variable.

Examples

Dim stg_a, stg_t As String Create string variables

stg_a = "112211this is a test221122"
stg_t = stg_a.Trim("'12") " stg_t set to "this is a test"
stg_t = stg_a.TrimStart(*'21") " stg_t set to "this iIs a test221122"
stg_t = stg_a.TrimEnd(*'123") " stg_t set to "112211this is a test”
stg a =" another test "
stg_t = stg_a.TrimQ " stg_t set to "another test"

See Also

Strings | string.Trim| string.TrimStart

467

Strings

string.TrimStart Method

Trims off characters or white space from the start of a String variable value.
...string. TrimStart(trim_chars)

Prerequisites

None
Parameters
trim_chars
An optional String expression. The characters of this expression define
the individual characters that are to be trimmed from the start of the
string. If a trimming character String is not specified, any white space
(e.g. space and/or horizontal tab characters) is trimmed off.
Remarks

This method trims off any occurrence of the characters specified in the trim_chars

expression from the associated string variable and returns the resulting String value.

multiple trim characters are present in the string, trimming continues until a non-trim
character is encountered. Trimming is performed at the start of the string variable.

Examples

Dim stg_a, stg_t As String Create string variables

stg_a = "112211this is a test221122"
stg_t = stg_a.Trim("'12") " stg_t set to "this is a test"
stg_t = stg_a.TrimStart(*'21") " stg_t set to "this iIs a test221122"
stg_t = stg_a.TrimEnd(*'123") " stg_t set to "112211this is a test”
stg a =" another test "
stg_t = stg_a.TrimQ " stg_t set to "another test"

See Also

Strings | string.Trim| string.TrimEnd

468

If

Strings

Asc Function

Converts the first character in a String variable or expression into its equivalent ASCII
numerical code and returns the Integer result.

...Asc (string)

Prerequisites

None
Parameters
string
A required String value. The string can be a String variable, constant,
method or concatenated value.
Remarks

Given a String variable or expression, the first character in the String is extracted and its
equivalent numerical value is returned as an Integer. This routine is convenient if you
have a string that contains non-printable characters and you wish to operate on their
values.

Examples

Dim ii As Integer
Dim ss As String

ss = Chr(10) " Line feed character
il = Asc(ss) " i1 will be set to 10
See Also

Strings | Chr Function

469

Strings

Chr Function

Given a numerical ASCII code, a String that consists of the equivalent ASCII character is
constructed and returned.

...Chr (expression)

Prerequisites

None
Parameters
expression
A required numerical expression. The expression must have an Integer
value that ranges from 0 to 255.
Remarks

Given a numerical expression whose Integer value defines one of 256 possible ANSI
ASCII character codes, a String is constructed and returned that contains a single
character set to the ASCII code.

This routine is convenient if you wish to construct a String value that contains non-
printable characters.

Examples

Dim ii As Integer
Dim ss As String

ss = Chr(10) * Line feed character
ss = Chr(GPL_CR) " Carriage return character
il = Asc(ss) " i1 will be set to 10

See Also

Strings | Asc Function

470

Strings

Format Function

Converts a numerical value to a String value based upon a specified output format
specification.

...Format(expression, format_s)

Prerequisites

None
Parameters
expression
A required numeric expression. This defines the numerical value that is
to be converted to a string. This value can be any numeric type, e.g.
Integer, Double, Boolean, etc.
format_s
An optional String expression. This String expression defines the
output format to generate. If format_s is not specified or is an empty
String value, the default format ("G") is utilized.
Remarks

This function converts a numerical value to a String in a specified format. The format_s
value specifies one of several pre-defined formats or defines a custom format. If the
format specification is not recognized, the contents of format_s are copied to the output in
place of a converted numerical value.

To specify a pre-defined formats, format_s must contain one of the single character
specifications described in the following table.

Predefined Formats Output Format

"G" or"g" General purpose format. Displays a maximum of 17
characters including the sign character. Includes at least
one integer digit with no leading space characters or
trailing zero's in the fractional part. If the number is too
large to display in 17 characters, this format automatically
switches to scientific notation.

"F" or "f" Fixed format. Always displays two fractional digits plus at
least one integer digit and more as required. No leading or
trailing space characters are generated.

471

Strings

"E" or"e" Scientific notation. Generates a value in the form of
“[s]n.nnnnnnesxx" where "s" is a "+" or "-" sign character

and "xx" is the base 10 exponent.

The custom format definition is a character by character literal description of the output
format. For example, "0.00#" specifies that the output is to contain as least one integer
digit and two fractional digits with an optional third fractional digit. If the numerical value
contains more integer digits than specified by the format, additional digits are added to
the left to fully display the numerical value. If additional fractional digits exist, the
fractional part is rounded to the specified number of fractional digits and only the
specified fractional digits are displayed. Leading and trailing space characters are not
included in the output.

The following table defines the character placeholders permitted in a custom format.

Custom Formats Output Format

"o" Displays a digit or "0" if none. If a"0" is to the left of the
decimal point, sufficient leading zeros are generated to
display the specified number of decimal digits. Likewise, a
"0" to the right of the decimal point always results in a digit
or a "0" character. For instance, when the number 23 is
displayed using the format "0000.0", the output of the
Format function is "0023.0".

" Displays a digit or nothing. If a "#" is to the left of the
decimal point, a digit is displayed if it is non-zero else
nothing is added to the output stream. Likewise, if a "#" is
to the right of the decimal point, only non-zero digits are
displayed. For instance, when the number 23 is displayed
using the format "###0.#", the output of this function is
"23."

" Decimal point placeholder. Separates integer and

fractional placeholders. Also, results in a"." being included
in the output stream.

"E" or"e Scientific notation. Outputs a number in scientific

notation. This format always generates one digit to the left
of the decimal point and a sign character and two digits in
the exponent, e.g. "[s]n.nnnnesxx". The significance of the
custom format is to specify the number of fractional digits
to be included.

Examples

Dim stg_a As String Create string variable

stg_a = Format(2323) * Default ('G") format, '2323"

stg_a = Format(2323,"G") * General ('G") format, '2323"

stg_a = Format(2323,"F'") " Fixed ("F') format, ''2323.00"

stg_a = Format(2323,"E") " Exponential (E') format, ''2.323000e+03"
stg_a = Format(.2,".0#") ® Outputs ".2"

stg_a = Format(.23,".0#") * Outputs ".23"

stg_a = Format(-.23,".0#") * Outputs "-.23"

stg_a = Format(2.1,".##") ® Outputs "2.1"

stg_a = Format(23.23,".000") ® Outputs "23.230"

stg_a = Format(23.23,''0000'") " Outputs "0023"

472

Strings

stg_a = Format(23.23,"0") ® Outputs "23"
stg_a = Format(-.23,"0.00e000') ® Outputs '"-2.30e-01"
See Also

Strings | CStr Function | Hex Function

473

Strings

FromBitString Function

Extracts a number that has been packed in its internal bit format into a String and returns
the value of the number.

...FromBitString (string, type, big_endian)

Prerequisites

None
Parameters

string

type

A required String expression whose 8-bit characters contain a sequence
of bits that are converted according to the type parameter to produce the
returned numeric value. The minimum length of this String depends on
the type parameter.

A required keyword that determines how the bit sequence in the string
parameter is interpreted. Must be one of the following: Byte, Short,
Integer, Single, Double.

big_endian

Remarks

A required numeric expression that determines the order in which bytes
in the string parameter are processed. If the value is zero or False, the
bytes are assumed to be in "little-endian" order, which means the least
significant bytes in the value appear first in the String (PC/Intel format).
If the value is non-zero or True, the bytes are assumed to be in "big-
endian” order, which means the most significant bytes in the value
appear first in the String (Motorola format).

This function operates on a String that contains a numeric value that has been packed in
a internal number format. This function extracts the value of the packed number by
converting the bits in the string according to the type specification. The 8-bit characters in
the string are concatenated together to form an 8, 16, 32, or 64-bit internal representation
of the number. The interpretation of the type parameter and the required number of
bytes in the string are presented in the following table.

474

Strings

Keyword Bytes Returned Value
Byte 1 Unsigned 8-bit value from 0 to 255
Short 2 Signed 16-bit integer

Integer 4 Signed 32-bit integer
Single 4 Single-precision IEEE floating point
Double 8 Double-precision IEEE floating point

The first byte of the string and any required successive bytes are used to obtain the bits.
The string parameter must be at least as long as the number of bytes required for the
data type.

When more than one byte is required, the order in which the bytes were packed into the
string is specified by the big_endian parameter. If this parameter is True, the first byte of
the string is the most-significant byte in the value. This is the typical format for Motorola
processors such as PowerPC's. If this parameter is False, the first byte of the string is the
least-significant byte in the value. This is the normal format for PC’s (Intel) processors.

Examples

Dim stg As String
stg = ToBitString(23, Byte, True) " Packs hex 17
Console.Writeline(FromBitString(stg, Byte, True)) " Prints 23

stg = ToBitString(-321, Short, True) " Packs hex FE,BF
Console.Writeline(FromBitString(stg, Short, True)) " Prints -321

stg = ToBitString(56720, Integer, True) " Packs hex 0,0,DD,90
Console.Writeline(FromBitString(stg, Integer, True)) " Prints 56720

stg = ToBitString(123.4, Single, True) * Packs hex 42,F6,CC,CD
Console.Writeline(FromBitString(stg, Single, True)) ~ Prints 123.4

stg = ToBitString(123.4, Double, True) * Packs hex 40,5E,D9,99,99,99,99,9A
Console.Writeline(FromBitString(stg, Double, True)) " Prints 123.4

See Also

Strings | ToBitString Function

475

Strings

Instr Function

Searches for an exact match of a substring within a String expression and returns the
starting position if found (1-n).

...Instr(start, string_t, string_s)

Prerequisites

None
Parameters
start
A required numeric expression. This value specifies the first character
position that is tested in string_t. Unlike the IndexOf method, a 1
specifies the first character position in string_t.
string_t
A required String expression. The String expression can be a String
variable, constant, function or method, or a concatenation of these
String elements. This specifies the target String that is searched for the
substring, string_s.
string_s
A required String expression. The String expression can be a String
variable, constant, function or method, or a concatenation of these
String elements. This specifies the substring value that must be found
within the string_t value.
Remarks

This method searches the value of the string_t expression for an exact, case sensitive
match to the specified string_s value. The search begins at the character specified by
start and continues with successive characters until either the first match is found or the
end of the string_t is encountered.

Depending upon the outcome of the search, the following values are returned by this
method.

String Values Returned Value

476

Strings

string_s is found in string_t Character position where the match begins. 1
indicates matched started at the first character
of string.
string_t has a zero length 0
string_s has a zero length start value
string_s not found in string_t 0
Examples
Dim stg_a As String " Create string variable

Dim pos As Integer
stg_a = "aBcDeFgHiJkLmNoPgRsTuVwXyZaBcDeFgHiJk"

pos = Instr(1, stg_a, "Fg'") " pos will be set to 6

pos = Instr(1, stg_a, "FG") " pos will be set to 0

pos = Instr(10, stg_a, "Fg") " pos will be set to 32
See Also

Strings | string.IndexOf

477

Strings

LCase Function

Returns a copy of a String expression where all of the alphabetic characters have been
converted to lower case.

...LCase(string_exp)

Prerequisites

None
Parameters
string_exp
A required String expression. string_exp can be a String variable,
constant, function, method or a concatenation of these String elements.
Remarks

This function evaluates a String expression, converts all of the alphabetic characters to
lower case leaving all of the non-alphabetic characters unchanged, and returns the
resulting String value.

Examples
Dim stg_result As String " Create a string variable
stg_result = LCase(''aBcDeF') " stg_result set to "abcdef"
See Also

Strings | string.ToLower | string.ToUpper | UCase Function

478

Strings

Len Function

Returns the count of the number of characters contained in a String variable or
expression.

...Len (string)

Prerequisites

None
Parameters
string
A required String value. The string can be a String variable, constant,
method or concatenated value.
Remarks

Returns the Integer count of the number of characters contained in the specified string. If
the value of the string is empty, a count of 0 is returned.

Examples

Dim ii As Integer
ii = Len(''123456") " 11 will be set to 6

See Also

Strings | string.Length

479

Strings

Mid Function

Returns a substring of a String expression starting at the specified character position and
consisting of a specified number of characters.

...Mid(string_exp, first_pos, length)

Prerequisites
None

Parameters
string_exp

A required String expression. string_exp can be a String variable,
constant, function, method or a concatenation of these String elements.

first_pos

A required numeric expression. This specifies the position of the first
character to be extracted and returned. Note, unlike the Substring
method, the first character position is 1 rather than 0.

length

An optional numeric expression. This value specifies the number of
characters to be copied into the returned value. If length is 0, the
returned substring will be empty. If length is not specified, all of the
remaining characters in the string_exp starting at the first_pos will be
copied.

Remarks

This function evaluates a String expression, extracts a substring from its value, and
returns the results. The substring is specified by its starting character position in
string_exp and the number of characters to be extracted.

Examples
Dim stg_result As String " Create a string variable
stg_result = Mid("aBcdef", 4, 2) " stg_result will be set to "de"
See Also

Strings | string.Substring

480

Strings

ToBitString Function

Converts the value of an expression to a specific numeric type and returns the internal bit
representation of the number packed into a String value.

...TOBitString (expression, type, big_endian)

Prerequisites

None
Parameters
expression
A required numeric expression whose value is converted.
type
A required keyword that determines how the numeric value is interpreted
and how many bytes the output String will contain. Must be one of the
following: Byte, Short, Integer, Single, Double.
big_endian
A required numeric expression that determines the order in which bytes
in the String output are generated. If the value is zero or False, the
bytes are packed in "little-endian" order, which means the least
significant bytes in the value appear first in the String (PC/Intel format).
If the value is non-zero or True, the bytes are packed in "big-endian"
order, which means the most significant bytes in the value appear first in
the String (Motorola format).
Remarks

This function evaluates a numeric expression, converts the results to a specified numeric
type and packs the bits of the value into a String that is returned. The numeric value is
written in the bit format used to internally represent the specified numeric

type. Depending upon the type, the converted value may have 8, 16, 32, or 64-bits,
which correspond to an output String that will consist of 1, 2, 4, or 8 bytes.

The following table describes the output of this function.

Keyword Bytes Numeric Type Conversion

Byte 1 Unsigned 8-bit value from 0 to 255

481

Strings

Short 2 Signed 16-bit integer
Integer 4 Signed 32-bit integer
Single 4 Single-precision IEEE floating point
Double 8 Double-precision IEEE floating point

When more than one byte is returned, the order of the bytes in the resulting String is
determined by the big_endian parameter. If this parameter is True, the first byte of the
String is the most-significant byte in the value. This is the typical format for Motorola
processors, e.g. PowerPC’s. Ifitis False, the first byte of the String is the least-
significant byte in the value. This is the normal format for PC’s (Intel processors).

Examples

Dim stg As String
stg = ToBitString(23, Byte, True) " Packs hex 17
Console.Writeline(FromBitString(stg, Byte, True)) * Prints 23

stg = ToBitString(-321, Short, True) " Packs hex FE,BF
Console.Writeline(FromBitString(stg, Short, True)) " Prints -321

stg = ToBitString(56720, Integer, True) " Packs hex 0,0,DD,90
Console.Writeline(FromBitString(stg, Integer, True)) " Prints 56720

stg = ToBitString(123.4, Single, True) * Packs hex 42,F6,CC,CD
Console.Writeline(FromBitString(stg, Single, True)) ~ Prints 123.4

stg = ToBitString(123.4, Double, True) * Packs hex 40,5E,D9,99,99,99,99,9A
Console.Writeline(FromBitString(stg, Double, True)) " Prints 123.4

See Also

Strings | FromBitString Function

482

Strings

UCase Function

Returns a copy of a String expression where all of the alphabetic characters have been
converted to upper case.

...UCase(string_exp)

Prerequisites

None
Parameters
string_exp
A required String expression. string_exp can be a String variable,
constant, function, method or a concatenation of these String elements.
Remarks

This function evaluates a String expression, converts all of the alphabetic characters to
upper case leaving all of the non-alphabetic characters unchanged, and returns the
resulting String value.

Examples
Dim stg_result As String " Create a string variable
stg_result = UCase(''aBcDeF') " stg_result set to "ABCDEF"
See Also

Strings | LCase Function | string.ToLower | string.ToUpper

483

Thread Class

Thread Class Summary

The following pages provide detailed information on the methods of the Thread Class.
This class provides the means for starting, stopping, and monitoring the execution of
independent threads.

The GPL system supports the simultaneous execution of up to 32 GPL program threads.
Each thread has its own execution stack and runs independently of all other threads. If
multiple threads are active, each thread executes for up to 1 millisecond before control
passes to the next ready thread.

When a GPL project is loaded, one procedure is designated as the main procedure in the
project file settings. This main procedure is started by the GDE interface, the web
Operator Control Panel, the Start console command, or automatically when the system is
restarted.

The main procedure can then start additional procedures as separate threads.

The table below briefly summarized the methods and properties that are described in
greater detall in the following sections

Member Type Description

Constructor|Creates a thread object and associates it

Method with a procedure.

thread object. Abort Method Stops execution of a thread such that it
cannot be resumed.

Sets or gets a numeric value that can be

used as a parameter for a thread.

Shared Returns a thread object for the currently

Method executing thread.

\Waits for a thread to complete execution,

New Thread

thread object.Argument Property

Thread.CurrentThread

thread object.Join Method .)
with a timeout.
. Get Returns a String containing the name of
thread _object.Name Property [the thread associated with this object.
Get Returns a String containing the name of

thread object.Project

Property [the project associated with this object.
Resumes execution of a thread that was

thread object.Resume Method

suspended.
Shared Changes the execution priority and
Thread.Schedule Method thread scheduling algorithm for the

current thread.
Sends an event to a thread to notify it
that a significant transition has occurred.

thread object.SendEvent Method

484

Thread Class

Thread.Slee Shared Causes the current thread to stop
. p ; " .
Method execution for a specified amount of time.
thread object.Start Method Initializes and starts execution of a
procedure as an independent thread.
Get Returns a String containing the name of

thread object.StartProcedure

the start procedure associated with this

Property object.
thread obiect.Suspend Method Suspends execution of a thread so that it
can be resumed.
Shared /Atomically reads a numeric variable and
Thread.TestAndSet writes a new value. Used for restricting
Method
access to data shared between threads.
thread obiect. ThreadState Get Return_s an integer indicating the
Property |execution state of a thread.
Thread WaitEvent Shared Causes the current thread to wait for an
Method event.

485

Thread Class

New Thread Constructor

Constructor for creating a thread object and associating it with the procedure executed by
the thread.

New Thread(procedure_name, project_name, thread_name, stack_size)

Prerequisites
None
Parameters
procedure_name

A required String expression that specifies the name of the procedure to
be executed by the thread. This procedure must be declared as
Public. Thatis, the Public keyword must be specified in its definition.

This procedure must be stored in a module or in a top-level user class. If
itis in a class, it must be declared as both Public and Shared. That is,
the Public and Shared keywords must both be specified in its

definition. In addition, it must be preceded by the class name and a "."
character in this parameter specification.

project_name

An optional String expression that specifies the name of the project that
contains procedure_name. If this parameter is omitted, the name of the
current project is assumed. Specifying this parameter is not supported by
GPL at this time.

thread_name

An optional String expression that specifies the name of the thread to be
created. If this parameter is omitted, the procedure_name value is used
as the thread name.

stack_size

An optional numeric expression that specifies the number of kilobytes of
stack to allocate for this thread. If zero or omitted, the default stack size
for this project is used.

Remarks

486

Thread Class

This method does not actually create the thread in the system. It simply records the
names for use by the Start method. If the procedure or project does not exist, no errors
occur until the Start method is called.

Examples

Dim threadl As New Thread(“Test”) " Create a thread object to execute the

" Public procedure Test in the current project
Dim threadl As New Thread(“Test”,,“Threadl”™) " Create a thread object to execute

" Public procedure Test with thread name Threadl
Dim threadl As New Thread(*'MyClass.Start') " Create a thread object

" to execute the Public Shared procedure
named Start in the class MyClass.

See Also

Thread Class | thread object.Start

487

Thread Class

thread _object.Abort Method

Stops a thread’s execution immediately and does not allow it to be resumed. The thread
must be restarted from the beginning.

thread_object.Abort()

Prerequisites
None

Parameters
None

Remarks

This method stops the thread associated with the object and deallocates internal
resources, just as if a console Stop command were issued. The thread cannot be
resumed, but can only be restarted using the Start method.

If you wish to be able to resume a thread, use the Suspend method instead.

If a thread executes the Abort method for itself, the thread exits with an error, but it is not
deallocated in the same way as a separate thread

Examples

Dim threadl As New Thread(“Test”)" Create a thread object to execute the

" procedure Test in the current project
threadl.Start() " Start the thread
threadl.Abort() " Stop the thread and prevent resumption.
Thread.CurrentThread.Abort() " Stops thread in which it is executed

See Also

Thread Class | thread object.Start | thread object.Suspend

488

Thread Class

thread _object.Argument Property

Sets or gets a humeric value that can be used as a parameter for a thread.

thread_object. Argument = <numeric_value>
Or
... thread_object.Argument

Prerequisites
None

Parameters
None

Remarks

This property associates a numeric value with a particular thread. The value may be set
prior to the execution of a thread and can be accessed by the thread during its execution,
thus serving as a parameter for the thread. This value may also be changed while the
thread is executing, but that is not its intended use.

For example, this value can be interpreted as an index to access an element of an array
that contains data for a thread.

Examples

Public ThreadData(1l6) As String

Public Sub MAIN
Dim t1 As New Thread("'Test", , "Threadl™)
Dim t2 As New Thread("'Test", , "Thread2'")
ThreadData(1)= "Thread data 1"
ThreadData(2)= "Thread data 2"
tl_Argument = 1
tl._Start
t2_Argument = 2
t2.Start

End Sub

" The following thread writes "Thread data 1" then
® "Thread data 2"

Public Sub Test
Dim index As Integer
index = Thread.CurrentThread.Argument
Console.WriteLine(ThreadData(index))
End Sub

See Also

489

Thread Class

Thread Class | Thread.CurrentThread | thread object.Name | thread object.Start

490

Thread Class

Thread.CurrentThread Shared Method

Returns a thread object that corresponds to the currently running thread.
thread_object = Thread.CurrentThread()

Prerequisites
None

Parameters
None

Remarks

This shared method returns an object that corresponds to the currently running thread.
This object may be used to abort or suspend the current thread. It does not need to be
associated with a thread object, only the thread class.

Examples

Dim mythread As Thread = Thread.CurrentThread() " Create a thread object
® for the current thread.
Thread.CurrentThread.Suspend () " Suspend the current thread.

See Also

Thread Class

491

Thread Class

thread_object.Join Method

Waits for a thread to become idle, with a timeout. Returns -1 (True) if the thread is now
idle or O (False) if the timeout time was exceeded.

status = thread_object.Join(millisecond_timeout)

Prerequisites
None

Parameters
millisecond_timeout

The maximum time to wait for the thread associated with thread_object
to become idle. A value of 0 means do not wait, just test if the thread is
idle. A value of -1 means do not timeout, wait forever for the thread.

Remarks

When this method is called, the calling thread waits until the thread associated with
thread_object becomes idle, or until the specified timeout value is exceeded. The
returned value of the method is -1 (True) if the thread is idle or if the thread does not
exist. The returned value is 0 (False) if the thread exists and is not idle. Normally a
returned value of 0 indicates that the timeout time has been exceeded. If the calling
thread is suspended externally and then resumed during the Join method, the value 0 is
returned even though the timeout time may not have been exceeded.

If the referenced thread is suspended or stops with an error, the Join method continues
waiting. It only completes with True when the thread is idle or deleted.

Examples

Dim threadl As New Thread(“Test”)" Create a thread object to execute the
" procedure Test in the current project

Dim status As Integer

threadl.Start() " Start the thread

status = threadl.Join(10000) " Wait for the thread to complete with a
" 10-second timeout.

If status Then

Console.Writeline(*“threadl is complete™)
End If

See Also

Thread Class | thread object.ThreadState

492

Thread Class

thread _object.Name Property

Returns a String value indicating the name of the thread associated with a Thread
object.

name_string = thread_object.Name

Prerequisites
None

Parameters
None

Remarks

This property returns a String containing the thread name as originally established when
the Thread object was created by its constructor.

Examples

Dim threadl As New Thread("Test", , "Threadl™) " Create thread object
Console.Writeline (‘Created thread: " & threadl.Name)
* Displays "Created thread: Threadl™

See Also

Thread Class | Thread Constructor | thread object.Project | thread object.StartProcedure

493

Thread Class

thread_object.Project Property

Returns a String value indicating the name of the project associated with a Thread
object.

name_string = thread_object.Project

Prerequisites
None

Parameters
None

Remarks

This property returns a string containing the project name as originally established when
the Thread object was created by its constructor.

Examples

Dim threadl As New Thread("Test", "Myproject') " Create thread object
Console._Writeline ("Thread project: " & threadl.Project)
" Displays "Thread project: Myproject"

See Also

Thread Class | Thread Constructor | thread object.Name | thread object.StartProcedure

494

Thread Class

thread_object.Resume Method

Resumes execution of a thread that was previously suspended.
thread_object.Resume()

Prerequisites
None

Parameters
None

Remarks

This method resumes the thread associated with the object, just as if a console Continue
command were issued. The thread may have been stopped by the Suspend method, or
by a break point, or by the console Break command.

If the thread is not suspended, this method does nothing.

Examples

Dim threadl As New Thread(“Test™) Create a thread object to execute the
procedure Test in the current project
Start the thread

Suspend the thread for now.

Wait for 1 second

Resume the thread

threadl.Start()
threadl.Suspend()
Thread.Sleep(1000)
threadl.Resume()

See Also

Thread Class | thread object.Suspend

495

Thread Class

Thread.Schedule Shared Method

Changes the execution priority and thread scheduling algorithm for the current thread.
Thread.Schedule(priority, period, high_priority_time, phase)

Prerequisites

None
Parameters

priority
A required numeric expression that evaluates to an Integer that specifies
a new execution priority for the current thread. This value can range from
0 to 16. A value of 0 specifies that the current thread is to execute at the
normal user thread priority and using the standard thread scheduling.
Values > 0 specify a higher than normal priority using an alternate
scheduling algorithm. Larger values indicate higher execution priority.

period

A required numeric expression that evaluates to a Double value that
specifies the scheduling repetition rate in milliseconds. This value must
be an even power of 2, multiplied by 0.125 msec, and greater than
0.125. Valid values are: 0.250, 0.5, 1.0, 2.0, 4.0, 8.0, 16.0, etc. This
value is ignored if priority is zero.

high_priority_time

A required numeric expression that evaluates to a Double value that
specifies the duration, in milliseconds, during which the thread runs at
the priority level. This value must be greater than zero and less than the
period parameter. It may be a fractional value and will be quantized to a
multiple of 0.125. This value is ignored if priority is zero.

phase

A required numeric expression that evaluates to a Double value that
specifies the phase offset, in milliseconds, when the thread begins to
runs at the priority level. This value must be non-negative and less than
the period parameter. It may be a fractional value and will be quantized
to a multiple of 0.125. The trajectory generator thread always runs at
phase offset 0. This value is ignored if priority is zero.

496

Thread Class

Remarks
This shared method is associated with the Thread class, not a specific Thread Object.

This method allows a thread to change when it executes (how it is scheduled) relative to
other threads. This allows a thread to run more often or with greater regularity than it
would otherwise run. However, since the GPL system contains a number of system
threads that can never be preempted by user threads, the response of a user thread
cannot be absolutely guaranteed.

The standard thread scheduling algorithm for normal user threads is a simple round-robin
scheme where each standard thread gets to run for one millisecond before it is moved to
the back of the list of all other standard threads. User threads compete with each other
and with standard and higher-priority system threads as shown in the table below. If the
system is heavily loaded, a given user thread may only get to run for 1 out of 8 or more
milliseconds. That may be undesirable for time-critical applications.

Thread

Priority Thread Type Specific Threads

Servos, trajectory generator, most
device drivers

User Threads that execute User Threads that execute
Thread.Schedule Thread.Schedule

Standard user threads, web server,
FTP, serial console, disk driver

> 16 (Highest) |High-Priority System Threads

1-16 (High)

0 (Standard) |[Standard Priority Threads

An alternate scheduling algorithm, enabled by the Thread.Schedule method, allows a
critical user thread to run in a timely manner, ahead of all other standard-priority threads.
This algorithm is based on the POSIX sporadic scheduling policy, with the addition of a
phase parameter. The algorithm schedules threads as follows:

1. Every period milliseconds, offset by phase, a high priority user thread has its
priority raised to the priority level above the standard thread priority.

2. After the thread has run for high_priority_time milliseconds, the thread's priority is
returned to the standard level, and it is placed at the end of the round-robin
gueue of standard-level threads.

3. The thread may run at standard priority if it gets to the front of the round-robin
gueue before the start of its next high priority period.

The diagrams below show how the Thread.Schedule method affects thread execution.
In these examples, we assume there are four user threads that are executing
continuously.

The first diagram shows standard round-robin scheduling where each vertical division
represents 125 usec.

497

Thread Class

498

OThread A
EThread B
OThread C
OThread D

0 1 2 3 4 5 6 7

Time in Milliseconds

Each thread runs for 1 msec, which consists of eight 125 psec clock ticks. At the end of
the 1 msec, the next thread begins, and the previous one goes to the end of the queue.

The next diagram shows the results of Thread C issuing Thread.Schedule(1, 2, 0.25, 1).

OThread A
EThread B
OThread C
OThread D

0 1 2 3 4 5 6 7

Time in Milliseconds

This diagram shows Thread C having its priority raised every 2 msec, with a phase offset
of 1 msec. So it runs at times 1, 3, 5, and 7. The thread's priority remains high for 0.25
msec (or 2 clock ticks). At the end of each interval, the thread's priority drops back to the
standard value and the thread is placed at the end of the round-robin queue. The other
threads each continue to run for a total of 1 msec each. Note that the real time from the
start of Thread D at time 2.25 to the end of Thread D at 3.5, greater than 1 msec because
Thread C preempts Thread D for 2 ticks.

The next diagram shows the results of Thread C issuing Thread.Schedule(1, 4, 0.25,
0.5).

OThread A
EThread B
OThread C
OThread D

0 1 2 3 4 5 6 7

Time in Millis econds

This diagram shows Thread C having it priority raised every 4 msec, with a phase offset
of 0.5 msec. So it runs at times 0.5 and 4.5. The thread priority remains high for 0.25
msec (or 2 clock ticks). At the end of each interval, the thread's priority drops back to the
standard value and the thread is placed at the end of the round-robin queue. The other
threads each continue to run for a total of 1 msec each. Note that at time 3.25, Thread C
runs at its normal priority because all the other threads in the round-robin queue ran after
Thread C completed at time 0.75. Thread C still runs at high priority at time 4.5, its next
scheduling interval.

Thread Class

Thread.Schedule can be used to synchronize a thread with the trajectory generator
when doing procedural motions or using the Move.SetRealTimeMod method. See the
Examples section below.

Additional notes and cautions:

e When using Thread.Schedule, it is possible to incorrectly specify parameters so
that all standard-priority threads never get any time to run. If this happens, the
serial console and the web interface will hang, and you will not be able to stop
your application. If the high priority thread is using the robot, pressing the E-
STOP button may cause the thread to stop. Otherwise you will need to reboot
your controller.

e If a high priority user thread is blocked because of I/O or robot motions, or if it
issues a Thread.Sleep or Controller.SleepTick method, when it wakes up, it
can still use the remainder of its high_priority_time interval.

o If a high priority user thread is preempted by a higher priority user thread or a
system thread, it can still use the remainder of its high_priority_time interval once
the preempting thread is complete.

e The standard round-robin scheduling provides a good balance for most
applications. Do not use the Thread.Schedule method unless necessary.

Examples

® Synchronize with the trajectory generator.

" Set period to be same as trajectory generator.

Thread.Schedule(1, Controller.Tick * 1000, 0.5, 0)

While True

S " Compute trajectory changes
Move . SetReal TimeMod (changes)
Controller._SleepTick(l) " Wait until next trajectory tick

End While

See Also

Thread Class | Thread.Sleep | Controller.SleepTick | Move.SetRealTimeMod

499

Thread Class

thread _object.SendEvent Method

Sends an event to a specific thread to notify it that a significant transition has occurred.
thread_object.SendEvent(event_mask)

Prerequisites

None
Parameters
event_mask
A required numeric expression that specifies the events to be sent. Each
bit in event_mask corresponds to a different event. Bit 0 (mask value
&HO0001) corresponds to event 1. Multiple events may be specified. The
maximum event is 16, so the maximum value for event_mask is
&HFFFF.
Remarks

Events are messages that are sent to synchronize one thread that is executing a GPL
project with another GPL project thread. Utilizing events has several advantages over
setting and polling a global variable:

e The thread waiting for an event uses almost no CPU time, as opposed to polling
a global variable.

e There is very little latency between when a message is sent and when the target
thread wakes up and handles the event, as opposed to a polling method where
the worst-case latency is the polling period.

For more details on events and event handling, see the WaitEvent method

Examples

Dim tl As New Thread(“TestThread’)
tl.Start

tI:SendEvent(&Hlo) " Send event 5 to thread
See Also

Thread Class | Thread.WaitEvent

500

Thread Class

Thread.Sleep Shared Method

Makes the current thread wait until a specified number of milliseconds have passed.
Thread.Sleep(milliseconds)

Prerequisites

None
Parameters
milliseconds
The number of milliseconds that this thread should wait before continuing
execution with the next statement. May contain a fractional component.
A value of 0 means allow another thread to execute, but continue
execution of the current thread immediately if no other thread is ready. A
value < 0 means wait forever, and is equivalent to invoking the Suspend
method for the current task.
Remarks

This shared method is normally associated with the thread class, not an object. If itis
used with an object, the current thread always waits, regardless of the thread object
contents.

The milliseconds parameter may contain a fractional component that permits waiting for
less than 1 millisecond. Any fraction is rounded up to a multiple of 0.125 milliseconds,
which is the minimum wait time on a Precise controller.

Because of interactions between user threads and higher priority system threads, sleep
times can be subject to milliseconds of jitter. Software should not be used to generate
short time-critical intervals. The Thread.Schedule method can be used to minimize
interactions with other threads of equal priority.

If a sleeping thread is suspended and resumed, the wait period restarts from the time that
the thread was resumed.

Examples
Thread.Sleep(5000) " The current thread waits for 5 seconds
Dim threadl As New Thread(“Test”) " Create an object for a different thread
threadl.Sleep(1000) " The current thread waits for 1 second
See Also

501

Thread Class

Thread Class | Thread.Schedule | thread object.SendEvent | Thread.WaitEvent

502

Thread Class

thread_object.Start Method

Starts the execution of an independent thread.
thread_object.Start()

Prerequisites
The procedure associated with thread_object must be declared Public.

The procedure associated with thread_object must be loaded into memory and compiled
without errors.

Parameters
None
Remarks

This method begins a new thread that executes the procedure associated with the
thread_obiject, just as if a console Start command were issued.

If the thread is currently active, this method does nothing and returns without error.

If the thread is currently paused, it is restarted by clearing the execution stack and
executing the procedure associated with the object. If a thread is stopped by using the
Abort method, it can only be restarted by using Start.

If the project or procedure associated with the object does not exist, or if there were any
errors compiling the project, this method issues an error.

To pass a numeric argument to the thread, see the thread_object. Argument property.

Examples

Dim threadl As New Thread(“Test”) " Create a thread object to execute the
" Public procedure Test in the current project
threadl.Start() " Start the thread

See Also

Thread Class | thread object.Abort | thread object.Argument

503

Thread Class

thread object.StartProcedure Property

Returns a String value indicating the name of the start procedure associated with a
Thread object.

name_string = thread_object.StartProcedure

Prerequisites
None

Parameters
None

Remarks

This property returns a String containing the name of the start procedure as originally
established by the Thread object constructor.

Examples

Dim threadl As New Thread("Test", "Myproject') " Create thread object
Console.Writeline ('Start procedure: " & threadl.StartProcedure)
* Displays "Start procedure: Test"

See Also

Thread Class | Thread Constructor | thread object.Name | thread object.Project

504

Thread Class

thread _object.Suspend Method

Suspends the execution of an independent thread.
thread_object.Suspend ()

Prerequisites
None

Parameters
None

Remarks

This method suspends the thread associated with thread_object, just as if a console
Break command were issued. The thread stops at the end of the current GPL instruction.
The thread may be resumed where it left off by the Resume method or by a console
Continue command.

If the thread does not exist, an error occurs. If the thread exists but is not currently active,
no error is generated.

This method does not wait until the thread actually stops. Use the ThreadState property
to determine when the thread is suspended.

Examples

Dim threadl As New Thread(“Test™) Create a thread object to execute the
procedure Test in the current project
Start the thread

Suspend the thread for now.

Wait for 1 second

Resume the thread

threadl.Start()
threadl.Suspend()
Thread.Sleep(1000)
threadl.Resume()

See Also

Thread Class | thread object.Resume

505

Thread Class

Thread.TestAndSet Shared Method

Atomically reads a numeric value from a variable and writes a new value. Used for
restricting access to data shared between threads.

old_value = Thread.TestAndSet(variable, new_value)

Prerequisites

None

Parameters

variable

A required numeric variable whose old value is first read and then
overwritten.

new_value

A required numeric expression whose value is written to variable.

Remarks

This method permits a thread to read and write a variable value, without any possibility
that another thread will change the value between the time it is read and the time it is
written.

In a multi-threaded application, this permits procedures to be developed that interlock
data structures that are accessed by more than one thread. This interlocking can avoid
problems created by having one thread access a data structure that is invalid because its
data is in the process of being modified by another thread.

Examples

506

" Thread-safe lock using Test and Set

Sub Lock (ByRef lock var As Integer)
* Loop while someone else has the lock
While Thread.TestAndSet(lock var, 1) <> 0
Thread.Sleep (0)
End While
End Sub

" Thread-safe unlock after using Test and Set
Sub Unlock (ByRef lock_var As Integer)

lock_var = 0
End Sub

Thread Class

" Thread-safe increment using Test and Set

Sub Inc_variable (ByRef inc_var As Integer)
Dim old_value As Integer

Do
old_value = inc_var
Loop While Thread.TestAndSet(inc_var,old_value+l) <> old_value

End Sub

See Also

Thread Class

507

Thread Class

thread_object.ThreadState Property

Gets a numeric value indicating the execution state of the thread specified by
thread_object.

state_var = thread_object. Thread State

Prerequisites
None

Parameters
None

Remarks

This property returns information about a thread’s execution state. The numeric value
returned by this property is described in the table below.

ThreadState
Value

Description

-1

The thread does not exist. Either it was never started or it was
stopped and deleted by an Abort method.

0

'The thread has completed execution normally and is idle. It
icannot be resumed, but it can be restarted with Start.

[The thread is stopping execution. This state is transient.

[The thread is executing normally.

[The thread is paused without error and can be resumed.

AIWIN |-

The thread is paused with an error. If it is resumed, it will retry
the instruction that caused the error.

Examples

Dim threadl As New Thread(“Test”)

threadl.Start()

Console.Writeline(threadl.ThreadState)

See Also

Thread Class

508

" Create a thread object to execute the
" procedure Test in the current project
" Start the thread

" Display the state code for threadl

Thread Class

Thread.WaitEvent Shared Method

Wait for, test and clear events received by the current thread. Returns a mask indicating
the received events.

received_events = Thread.WaitEvent(event_mask, time_out)

Prerequisites

None

Parameters

event_mask

A required numeric expression that specifies the set of events to wait for.
Each bit in event_mask corresponds to a different event. Multiple events
may be specified. The maximum event is 16, so the maximum value for
event_mask is &HFFFF.

If event_mask is 0, no wait occurs, no events are cleared, and all
received events are returned.

time_out

Remarks

A required numeric expression that specifies the maximum time, in
milliseconds, to wait if no matching events are received. The maximum
wait time is 2147 seconds.

If 0, this method does not wait, but only tests pending events against the
event_mask. If < 0, this method does not timeout and waits forever.

The returned value is a bit mask indicating events that have been received. Bit 0 (mask
value &HO0001) corresponds to event 1. The mask indicates either all pending events, or
only those matched by event_mask, as described below.

The behavior of this method depends on the combination of parameters as described in
the following table.

event_mask | time_out Description
Value Value
The method does not wait for or clear any events, but
0 N.A. . . A .
simply returns a bit mask indicating all received events.

509

Thread Class

The method does not wait. It clears all events that match
the bits in event_mask. It returns a bit mask indicating
<>0 0 the events that were cleared. This parameter
combination may be used to return and clear specific
received events without waiting.

The method waits until at least one event corresponding
to a bit in event_mask has been received. If a matching
event was previously received and not cleared, the
method does not wait.

<>0 >0 Before returning, it clears all pending events that match
the bits in event_mask, and returns a bit mask indicating
the events that were cleared.

If no matching event is received before the timeout
period, this method returns a value of 0.

This case is the same as "event_mask <> 0, time_out >
<>0 <0 0" case except that it waits indefinitely for the events,
and never times out.

Events are synchronization messages that are sent from one thread executing a GPL
project to another thread that is executing a GPL project. Utilizing events has several
advantages over setting and polling a global variable:

e The thread waiting for an event uses almost no CPU time, as opposed to polling
a global variable.

e There is very little latency between when a message is sent and when the target
thread wakes up and handles the event, as opposed to a polling method where
the worst-case latency is the polling period.

Each thread can handle up to 16 different events. These 16 events are independent of
the events for all other threads. An event is specified by the target thread and a bit within
the thread’s event_mask.

Events handled by WaitEvent are automatically cleared, except for the special case
when event_mask = 0. A receiving thread can simply loop waiting for events, checking
the returned bit mask, and servicing whatever events bits are set. If the WaitEvent
event_mask specifies more than one event, be sure to check all possible events, since
more than one event may be returned simultaneously and be cleared.

In a client-server situation, a client thread can place a command in a global variable, and
then send an event to the server. When the server receives the event, it can examine the
global variable to determine the detailed command.

Examples

510

Public main_thread As Thread

Public Sub Main
Dim t1 As New Thread(''Testthread')
main_thread = Thread.CurrentThread

tl.Start
t1.SendEvent(&H10) " Send event 5 to thread
Thread.WaitEvent(&H8, -1) " Wait for event 4, clear it
Console.Writeline (“'"Main thread event received™)

End Sub

Thread Class

Public Sub Testthread
Dim events As Integer
events = Thread.WaitEvent(&H10,100) * Wait with timeout
IT events = 0 Then
Console.Writeline (“"Testthread event timeout')

Else
Console.Writeline (“Testthread event received')
End If
main_thread.SendEvent(&H8) " Send event 4 back to main thread
End Sub

See Also

Thread Class | thread_object.SendEvent

511

Vision Classes

Vision Classes Summary

The following pages provide detailed information on the properties and methods for the
classes that implement the interface to the PreciseVision machine vision system.

This interface includes two classes: the Vision Class that manages communications
between GPL and PreciseVision and the VisResult Class that stores a single set of
results from a single vision tool. As a convenience, there is no explicit method for
connecting to PreciseVision. Whenever the Vision methods Process, Result or
ResultCount are executed, GPL automatically establishes a connection to the vision

system.

The tables below briefly summarize the properties and methods for each Class, which
are described in greater detail in the following sections.

Vision Class
Member

Type

Description

New Vision

Constructor
Method

Creates an empty Vision object. Does not
communicate with PreciseVision.

\vision

obj.Disconnect

Method

Closes any open connection associated
with a vision object.

\vision

obj.ErrorCode

Property

Returns the numeric error code for the
last executed vision process. A value of 0
indicates success; a negative value
indicates an error.

\vision

obj.Instance

Property

Sets and gets the number of the
PreciseVision instance that is associated
with a vision object.

\vision

obj.IPAddress

Property

Sets and gets the IP address of the PC
that is running the PreciseVision
application software associated with a
vision object.

\vision

obj.Process

Method

Requests that PreciseVision execute a
vision process and waits for it to
complete. Connects to PreciseVision if
there is currently no connection.

\vision

obj.Result

Method

Returns a VisResult object that contains
a single set of results from a previously
executed vision tool. Connects to
PreciseVision if there is currently no
connection.

\vision

obj.ResultCount

Method

Returns the number of sets of vision
results created by a vision tool the last

time it was executed. Connects to

512

Vision Classes

PreciseVision if there is currently no
connection.

\vision obj.Status

Property

Returns a numeric value indicating the
status of a vision process:

0 = No vision process for this object,
1 = Process is running,

2 = Process complete but with error,
3 = Process complete with success.

\vision obj.ToolProperty

Property

Sets or gets a property value of a
PreciseVision tool or a general "system"
property for the vision server connected to

a vision object.

VisResult Class Member Type

Description

New VisResult

Constructor
Method

Creates an empty VisResult object.
Not useful since VisResult objects are
normally created by the

vision object.Result method.

\visresult obj.ErrorCode

Property

Returns the numeric error code for this
result. A value of O indicates success; a
negative value indicates an error. A
positive value indicates success with a
warning.

\visresult obj.Info

Property

Returns the nth numeric information
field contained in this set of results.

visresult obj.InfoCount

Property

Returns the number of numeric
information items in this set of results.

visresult obj.InfoString

Property

Returns a String value if the set of
vision results includes text information.

\visresult obj.InspectActual |Property

Returns the value of the tool property
that was tested in the vision inspection
process.

visresult_obj.InspectPassed|Property

Returns True if a property of the vision
results satisfied the tool's vision
inspection criteria.

Returns the position and orientation

\visresult _obj.Loc Property from a set of results as a Cartesian
Location object.
. . Returns the ID of the vision process
\visresult obj.ProcessID Property that generated the resut.
Visresult ob.Type Property Returns the type of this set of results.

Currently always zero.

513

Vision Classes

vision_object.Disconnect Method

Closes the network connection associated with a vision object.
vision_object.Disconnect

Prerequisites
None

Parameters
None

Remarks

This method closes the TCP/IP connection to PreciseVision that is associated with a
vision object. No error occurs if there is currently no connection.

When a vision object is no longer referenced anywhere, the TCP/IP connection is
automatically closed.

Examples

Dim vobject As New Vision
vobject.Disconnect

See Also

Vision Classes

514

Vision Classes

vision_object.ErrorCode Property

Gets the Integer error code for the last executed vision process.
...vision_object.ErrorCode

Prerequisites

A Process method must have been executed using the vision_object and the execution
must be completed.

Parameters
None
Remarks

This property returns the Integer error code for the last vision process executed by the
vision_object. A value of 0 indicates success; a negative value indicates an error. If no
process was ever run, a value of 0 is returned. Please see the section on System Error
Codes in the Precise Documentation Library for a list of vision error codes and their
interpretation.

This property is different from the visresults_object.ErrorCode. The
visresults_object.ErrorCode indicates if a specific Vision Tool encountered an error
during execution, e.g. it didn't find what it was searching for. The
vision_object.ErrorCode indicates if a vision process could not be found or if a
communication error occurred between GPL and PreciseVision. This property never
signals an error if an individual tool fails for whatever reason.

If the vision_object.Status property returns a value of 2, indicating that an error has
occurred, the ErrorCode property contains the specific error code that describes the type
of error.

Examples

Dim vobject As New Vision
vobject.Process("'find_part') " Execute find_part process
IT vobject_ErrorCode <> 0 Then
" Handle error
End If

See Also

Vision Classes | vision _object.Status | visresult object.ErrorCode

515

Vision Classes

vision_object.Instance Property

Sets and gets the number of the PreciseVision instance that is associated with a vision
object.

vision_object.Instance = <integer_value>
Or
...vision_object.Instance
Prerequisites
When this property is set, the vision object must not be connected to PreciseVision.
Parameters
None

Remarks

Multiple, independent instances (copies) of the PreciseVision application software can be
run on a single PC. When each copy of PreciseVision is started, its instance number
must be explicitly specified if it is not the first instance. By default the first copy of
PreciseVision is instance 1.

For some applications, a single Precise Controller may need to communicate with
multiple instances of PreciseVision or with a specific instance. This property allows a
GPL program to select the instance that is used as a vision server for the specified vision
object.

If the Instance property is not set, the default value is 1.

Examples

Dim vobject As New Vision
vobject. Instance = 2 " Select server instance 2
vobject.Process(*"'find_part')

See Also

Vision Classes | vision object.IPAddress

516

Vision Classes

vision_object.IPAddress Property

Sets and gets the IP address (as a String value) of the PC that is running the
PreciseVision application software associated with a vision object.

vision_object.IPAddress = <string_value>
Or
...vision_object.IPAddress

Prerequisites

When this property is set, the vision object must not be connected to PreciseVision.
Parameters
None

Remarks

By default, a Precise Controller connects to its PreciseVision server at the IP address
specified by the configuration parameter "Vision server IP address" (DatalD 424).

For some applications, a single Precise Controller may need to communicate with more
than one PreciseVision server on different PCs. This property overrides the IP address
specified by DatalD 424 for the connection made by the current vision object.

The properties String value contains the IP address in the form nnn.nnn.nnn.nnn where
each nnn field is a decimal number representing 8 bits of the 32-bit IP address.

If the IPAddress property is not set, the value from DatalD 424 is used.

Examples

Dim vobject As New Vision
vobject. 1PAddress = "192.168.0.20"
vobject._Process(*'find_part')

See Also

Vision Classes | vision object.Instance

517

Vision Classes

vision_object.Process Method

Issues a request to PreciseVision to execute a vision process and waits for the process
to complete.

vision_object.Process(vision_process_name, vision_process_id)

Prerequisites

The specified vision process must already be defined within the PreciseVision system.

Parameters

vision_process_name

A required String expression that specifies the name of the
PreciseVision process that is to be executed. This corresponds to the
name that is displayed in the "Process Manager" window in
PreciseVision.

vision_process_id

An optional numeric expression that defines a positive integer number to
be used by the vision process as its ID code. This value may range from
0to 2147483647. If omitted, an ID code of zero is assumed.

Remarks

518

This method requests PreciseVision to execute the specified vision process. It then waits
until PreciseVision has completed the process. If PreciseVision does not respond within
30 seconds, an error exception is thrown.

Executing a vision process is the basic method that GPL employs to command
PreciseVision to take a picture and analyze it. From GPL's point of view, a vision process
is a single, indivisible operation. That is, after GPL starts a vision process, no results are
available until after the process completes its execution. When the process is done
running, GPL can interrogate PreciseVision for information on the output of any

tool. Normally, a vision process consists of a command to take a picture (i.e. an
Acquisition Tool) followed by additional tools to process and analyze the picture. In the
simplest case, a process can consist of a single tool that operates on an existing

picture. At other times, a process can be quite complex and may consist of dozens of
tools that inspect multiple features of parts to verify that the part is correct.

In order for GPL to execute a process and retrieve the results, GPL has to know the
name that has been assigned to the vision process in PreciseVision and the names of
any tools for which results are desired.

Vision Classes

Each time that a vision process is executed, all of the previous results of its tools are lost
and replaced by the newly computed results. However, if a different vision process is
executed using another Vision object, the results of first vision process are preserved.

The Status property can be used to determine if the process completed successfully.

The Process method performs communications with PreciseVision. If an Ethernet
network connection does not exist, a connection is automatically established. If a
connection cannot be setup or the communication link fails for any reason, this method
will throw an exception.

If the optional vision_process_id is specified, all of the results generated by the vision
process will be tagged with this ID number. The ID number of any result can be fetched
by obtaining the value of the visresult_object.Processld property.

Examples

Dim vobject As New Vision
vobject._Process(*'find_part')
IT vobject.Status <> 3 Then

* Deal with error
End If

See Also

Vision Classes | vision object.Status | visresult object.Process|D

519

Vision Classes

vision_object.Result Method

Returns a VisResult Object that contains a single set of results from a vision tool.
...vision_object.Result(vision_tool_name, index, location_object)

Prerequisites

A Process method must have been executed using the vision_object and the execution
must be completed.

Parameters
vision_tool_name

An optional String expression that specifies the name of a specific
PreciseVision tool that was executed in the vision process associated
with vision_object. The tool name must match one of those listed in the
PreciseVision "Process Manager" window for the executed process. If a
tool name is specified, a single set of results generated by that tool will
be returned. If omitted, a single set of results from the final tool in the
vision process is returned.

index

An optional numeric expression indicating which set of results to return
for the selected tool. The numeric value can range from 1 to
vision_object.ResultCount. If omitted, the first set is returned.

location_object

(Future enhancement) An optional Cartesian Location Object whose
value is sent to PreciseVision when the result is requested. Depending
on where the camera is mounted and the particular vision tool, this
location value may be used to determine the returned vision result.
Details on what value to pass in this parameter are described in the
PreciseVision documentation for specific vision tools.

Remarks

This method requests PreciseVision to return a set of results from a tool that was part of
the previously executed vision process. If the vision tool generated multiple sets of
results, the index parameter is utilized to specify the set of results to be returned. The
results data can be fetched any number of times from any tool that is part of the vision
process until the vision process is executed again. When a vision process is executed
again, all of the old results are lost and a new set of results data will be available.

520

Vision Classes

When this method is executed, it returns a VisResult Object whose data can be
accessed by the standard properties and methods available for that object class.

For cameras mounted on a robot or for pictures of an object held by the robot, it may be
necessary to pass camera or robot location information to PreciseVision so that the result
location may be determined. In this case, the optional location_object parameter must be
specified.

The Status property can be used to determine if the previous vision process completed
successfully.

This property performs communications with PreciseVision. If an Ethernet network
connection does not exist, a connection is automatically established. If a connection
cannot be setup or the communication link fails for any reason, this method will throw an
exception.

Examples

Dim vobject As New Vision
Dim result As VisResult
vobject._Process(*'find_part')

result = vobject.Result() " Get result 1 of final vision tool

result = vobject.Result("holel™) " Get result 1 of vision tool "holel"

result = vobject.Result(, 2) " Get result 2 of final vision tool
See Also

Vision Classes | vision _object.Process

521

Vision Classes

vision_object.ResultCount Method

Gets the number of results generated by a vision tool in the last executed vision process.

...vision_object.ResultCount(vision_tool_name)

Prerequisites

A Process method must have been executed using the vision_object and the execution
must be completed.

Parameters

vision_tool_name

An optional String expression that specifies the name of a specific
PreciseVision tool that was executed in the vision process associated
with vision_object. The tool name must match one of those listed in the
PreciseVision "Process Manager" window for the executed process. If a
tool name is specified, the number of sets of results generated by that
tool will be returned. If omitted, the number of sets of results for the final
tool in the vision process is returned.

Remarks

This property returns the number of sets of results generated by a vision tool. This is the
same value as the PreciseVision ResultCount tool property.

A value of 0 indicates that no results are available or that some type of error occurred
when the tool was executed. Depending upon the basic type for the vision tool, zero,
one, or multiple sets of results may be generated each time the tool is executed. For
example, the tool that extracts the best fit line (i.e. the Line Fitter) will return at most one
set of results if a line can be fit or none if it is unsuccessful. On the other hand, the
general tool that locates parts (i.e. the Finder) can generate dozens of sets of results if
multiple identical parts are in the camera's field of view.

If one or more sets of results can be accessed, the Result method should be called as
many times as necessary to fetch the data for each set of results.

This property performs communications with PreciseVision. If an Ethernet network
connection does not exist, a connection is automatically established. If a connection
cannot be setup or the communication link fails for any reason, this method will throw an
exception.

Examples

522

Vision Classes

Dim vobject As New Vision

Dim vresults As VisResult

Dim ii As Integer

Dim results As Integer
vobject._Process(*'find_part')
results = vobject.ResultCount()
For 1i = 1 To results

vresults = vobject.Result(,ii)
" Process results

See Also

Vision Classes | vision object.Status

523

Vision Classes

vision_object.Status Property

Gets the numeric status code for a vision process.
...vision_object.Status

Prerequisites
None

Parameters
None

Remarks

This method returns the status code for the vision process associated with the
vision_object. The returned status codes are as follows:

Status Code Description
0 No vision process for this object
1 \Vision process is running
2 \Vision process completed but with error
3 \Vision process completed with success

At this time, the value 1 is not seen because the Process method always waits until the
vision process is complete. A no-wait vision process may be added as a future
enhancement.

If Status has a value is 2, the ErrorCode property can be used to determine the specific
type of error that has occurred. Note, this property returns an error if the process did not
exist or if a communication error occurs. However, if a specific tool fails, such as when a
Line Fitter cannot find enough edges to fit a line, Status does not indicate an error. For
tool analysis errors, please see the visresults_object.ErrorCode property.

Examples

Dim vobject As New Vision
vobject._Process(*'find_part')
IT vobject.Status <> 3 Then

" Handle non-successful process
End If

See Also

Vision Classes | vision object.ErrorCode | visresults object.ErrorCode

524

Vision Classes

vision_object.ToolProperty Property

Sets or gets a property value of a PreciseVision tool or a general "system" property for
the vision server connected to a vision object.

vision_object.ToolProperty (property_name_string) = <property_value_string>
Or
...vision_object.ToolProperty (property_name_string)

Prerequisites
None

Parameters
property_name_string

A required String expression that contains the name of the tool property
to get or set. This String is normally in the form:

tool_name.property_name, where tool_name is the name of a tool
defined in PreciseVision, and property _name is the name of a property
within that tool.

Remarks

This property permits a GPL program to dynamically change the properties of a tool
defined within PreciseVision. This capability allows a GPL program to use the results of a
previous vision process to adjust or refine the tools used by a future vision process.

The vision tools available depend on what has been defined in your particular vision
application. The properties associated with each tool, and the possible property values
are described fully in the PreciseVision documentation.

Each time a ToolProperty procedure is invoked, messages are exchanged between the
Precise Controller and the PreciseVision system connected to the vision object. If an
Ethernet network connection does not exist when this property is referenced, a
connection is automatically established. If a connection cannot be setup or the
communication link fails for any reason, this method will throw an exception.

As a means for transmitting system information to and from Precise Vision, Tool
Property recognizes "System" as a special tool name. The information that can be
exchanged using this special name is defined in the following table.

System.<property> Operation Description

Vision Classes

526

Clear Calibration

Sets the calibration data for the specified camera (1-n) to the
identity (cleared) value so that returned position values are in
pixels instead of mm. Should be executed before loading
new calibration data.

DisplayMode

Defines the contents of the PreciseVision main window in the
PC screen. It accepts a single parameter, mode, that is
interpreted as follows:

0 - Resets the display mode to the standard default PV
display. All standard windows, toolbars, menus, etc. are
visible and available for use.

1 - Displays only the camera window and the current Tool's
window. The PV form border, title, and status bars are
hidden.

2 - Displays only the camera window. The PV form border,
title, status bars and all dockable controls are hidden.

3 - Minimizes the PV main window.

Info

Returns "{PV Version},{CameraAcquireType},{Camera
Statusl, ...,Camera Status6}. This indicates the version of
PV that is being executed together with indications of which
cameras have been properly connected to the system.

ImportProject

Loads in the PreciseVision project contained in the file
specified by <property_value_string> and merges its contents
with the currently loaded project. If the new project contains
any processes or tools whose names conflict with items that
are already loaded, "_r" is appended to the name of the new
item. Also, any camera calibration information that is
contained in the new project is ignored.

LastProcessTime

Returns the total execution time for the last vision process
that was run, in seconds. This is the same information that is
displayed in the Application Status Bar at the bottom of the
PreciseVision window.

LayOut

Selects one of the predefined panel layouts to be displayed
within the main PV window. Requires a single parameter,
layout, whose value is interpreted as follows:

1 - Edit mode
2 - Runtime mode
3 - Calibration mode

LoadCall

Dynamically loads a specified calibration file into
PreciseVision and assigns it to camera #1. To load camera
#n, specify "LoadCaln". If the calibration file cannot be
located, a -4022 error code will be returned.

Loadlmage

Loads an image from the file specified by
<property value_string> into the camera display buffer.

LoadProject

Deletes the currently loaded PreciseVision project and loads
in the project contained in the file specified by
<property_value_string>. If the currently loaded project has
been modified, a -4023 error code will be returned and the
load will not be attempted. To ignore the any project
modifications, please see the System.ProjectModified

property.

Lock

Performs the same function as the "Lock/Unlock Application”
button in the PreciseVision Main Menu bar. If set to the

string value "true", the user interface prohibits any changes

Vision Classes

from being made. If set to "false", changes are again
permitted.

MMToPixelTrans1

(Superceded by new CamCal properties) Read the values

PixelToMMTrans1

of the calibration matrices for camera #1. The elements of
each 3x3 transformation are return as 9 numeric values
delimited by commas (",") in a String. The values are
returned in the following order: t11, t12, t13, t21, t22, t23,
t31, t32, t33. To access the data for camera #n, specify

... Transn.

Position

Positions and sizes the main PV window relative to the PC's
screen. This property requires four parameters whose values
are delimited by ",":

<xpos> - X position relative to the top-left of the screen
<ypos> - Y position relative to the top-left of the screen
<width> - Width of the main PV window (optional)
<height> - Height of the main PV window (optional)

All units are in pixels.

ProjectModified

Returns or sets a True/False flag that indicates if the
currently loaded vision project has been modified. If the
current project has been modified and you wish to load in a
new project without saving the new changes, you can set this
property to False. If this flag is True and you attempt to load
a new project, a -4023 error code will be returned.

ProjectName

Returns the name of the currently loaded vision project or its

ProjectPath

file path including the project name or its user settable

ProjectVersion

version number.

RefreshGraphics

Equivalent to pressing the "Refresh Camera Display Window
Graphics" button in PreciseVision. It redraws any graphics
generated by vision tools in the Camera Display window.

Savelmage{n}

Stores the image contained in the specified camera buffer
into the file specified by <property value string>.

Stores the currently loaded PreciseVision project into the file

SaveProject specified by <property value string>.
Specifies whether the main PV window is on top of other
windows on the PC's screen. It requires a single parameter,
mode, which is defined as follows:
TopMost 0 - Normal (resets topmost property)
1 - Keeps window on top
This property permits PV to stay on top of other applications
while the user clicks or drags other windows on the screen.
Sets the "zoom" scale factor for the camera display
window. It requires a single parameter, scale_factor, that
Zoom ranges from 0 to 5 in steps of 0.1. A value of 0 will

automatically set the zoom so that the entire frame buffer will
be displayed within the camera display window.

In situations where a GPL program wishes to trigger the execution of a camera

calibration procedure, ToolProperty recognizes "Camcal" as a special tool name. For a
"Camera only" area calibration, the information that can be exchanged using the Camcal

tool name is defined in the following table.

527

Vision Classes

Camcal.<property> Operation Description
Camera Sets the number of the camera to be used, "1" to "n".
Indicates the type of camera calibration to be
CalType performed. This must be set to "1" for the simple stationary
camera area calibration.
CalErrorNum Returns an indication of whether or not the calibration
CalErrorString process _exec_uted without an error. CalErrorNum will be O
if the calibration was successful.
CalFileName Saves the calibration results into the specified disk file.
CalSave
Execute Initiates the calibration procedure.
SquarelsDark \When the standard calibration target is utilized that consists
SquareMinArea of a grid of squares, these parameters define the size and
SquarePitch the pitch of the squares in mm. The SquareDark indicates
if the squares are dark (1) or white (0). The
SquareSize SquareMinArea specifies the minimum acceptable area of

each square in pixels.

ResultMaxError Returns statistical results of the calibration process. This
ResultNumCornerFound|includes the maximum and RMS error that indicate how
ResultNumCornerUsed Wwell the calibration target was matched, and information on
the number of corners of the grid of squares that were

ResultRMS located and utilized.
Threshold Defines the binary threshold applied during the calibration
process to initially locate the squares in the grid (0-255).
Width) .
H : Defines the size and center of the AOI to be processed
eight . o .
X uring the calibration procedure. These parameters are in
Y units of pixels.

If the calibration scale factors for a camera are to be explicitly set, the following
information can be exchanged using the Camcal tool name.

Camcal.<property> Operation Description
Camera Sets the number of the camera to be used, "1" to "n".
Indicates the type of camera calibration to be
CalType performed. This is must be set to "0" for explicitly setting the
\values of the calibration matrix.
CalErrorNum Returns an indication of whether or not the calibration

process executed without an error. CalErrorNum will be O if

CalErrorString the calibration was successful.

CalFileName
CalSave
dxPixPerMM Explicitly specifies the pixel per MM scale factors in both the

dyPixPerMM X and Y directions.
Execute Initiates the calibration procedure.

Saves the calibration results into the specified disk file.

Independent of the camera calibration method, the following properties can be utilized to
retrieve camera setup and calibration results information.

Camcal.<property> Operation Description

Camera Sets the number of the camera to be accessed, "1" to "n".

528

Vision Classes

CameraFrameSize

Returns the camera frame buffer size as "Width, Height" in
pixels. The actual camera image may be smaller than the
frame buffer size.

PixelPerMM

Returns the average pixel per mm ratio for the specified
camera.

PixelToMMTrans

Returns the calibration matrices that convert between

MMToPixelTrans

camera pixels and units of millimeters. These matrices are
computed as a result of performing the camera calibration
using the standard grid of squares.

The elements of each 3x3 transformation are return as 9
numeric values delimited by commas (",") in a String. The
\values are returned in the following order: t11, t12, t13, t21,
t22, 123, t31, t32, t33. These matrices are 3x3's to include

perspective distortion correction.

For example, given a PixelToMMTrans value, a camera pixel
coordinate (Px,Py) can be converted to millimeters (adjusted
for perspective distortion) using the following equations:

Cx = (t11*Px+t12*Py+t13)/pscale

Cy = (t21*Px+t22*Py+t23)/pscale
where

pscale = (t31*Px+t32*Py+t33)

CameraToRobot

Returns the calibration matrices that convert between a

RobotToCamera

camera's frame of reference and a robot's frame of
reference. These matrices are computed as a result of
performing a "robot vision camera calibration”. After a
camera pixel coordinate has been transformed to mm and
corrected for perspective distortion using the
PixelToMMTrans, the camera coordinate value can be
multiplied times the CameraToRobot transformation to
compute the equivalent position in the coordinate system of
a robot.

The elements of each 4x4 homogeneous calibration
transformation are return as 16 numeric values delimited by
commas (",") in a String. The values are returned in the
following order: t11, t12, t13, t14, t21, t22, t23, t24, t31, t32,

t33, t34, 141, t42, t43, t44.

For example, given a CameraToRobot value, a camera X, Y
position (Cx, Cy) in millimeters can be converted to a robot
XYZ position using the following equations:

Rx = t11*Cx+t12*Cy+t14
Ry = t21*Cx+t22*Cy+t24

Rz = t31*Cx+t32*Cy+t34

Examples

Dim prop As String

Dim vobject As New Vision

prop = vobject.ToolProperty(“'hist.angle™)
vobject._ToolProperty(*'system.loadcall'™) = *"C:\call.dat"
prop = vobject.ToolProperty(‘'system.mmtopixeltransl')

529

Vision Classes

See Also

Vision Classes

530

Vision Classes

visresult_object.ErrorCode Property

Gets the Integer error code for a vision results object.
...visresult_object.ErrorCode

Prerequisites
None

Parameters
None

Remarks

This property returns the Integer error code for the visresult_object. This is the same
value as the PreciseVision ResultErrorCode tool property.

A value of 0 indicates that the result was computed successfully and is valid. A positive
value indicates a non-critical error occurred during processing, but the result information
is valid. A negative value is a standard GPL error code and indicates an error occurred
when PreciseVision was computing the result. Please see the section on System Error
Codes in the Precise Documentation Library for a list of vision error codes and their
interpretation.

When a critical error occurs, the associated tool and all of the tools that are dependent
upon that tool are not processed. The dependent tools will also return a critical error
condition when they are queried. When a critical error is indicated, the other properties
for the visresult_object may not contain valid information.

Examples

Dim vresult As VisResult
vresult = vobject.Result()
IT vresult.ErrorCode <> 0 Then
" Handle error
End If

See Also

Vision Classes | vision object.ErrorCode

531

Vision Classes

visresult_object.Info Property

Returns a Double value from the vision result object's numeric information array.
...visresult_object.Info(index)

Prerequisites

None
Parameters
index
A required numeric expression that specifies the array index for the
information element that is to be returned. The first array element has an
index of 0. This parameter must have a value greater than or equal to
zero.
Remarks

The common results values returned from the Vision Tools are accessed via standard
properties of the VisResults Objects, e.g. the position and orientation of the results are
available from visresult_object.Loc. However, some tools return special numeric data
that is specific to the tool. For example, the Finder Tool returns the X and Y scale factors
for the parts that it has located. This type of tool specific information is returned in the
visresult_object.Info array property.

For information on what data a tool returns in this property and the index of the data,
please consult the "PreciseVision Machine Vision System, Introduction and Reference
Manual". In the detailed descriptions for each tool, properties that are returned in the Info
array and their array index values are highlighted.

Examples

Dim vresult As VisResult
vresult = vobject.Result() " Get a tool"s results
IT vresult.Info(2) > .5 Then

See Also

Vision Classes | visresult object.InfoCount | visresult object.InfoString | visresult object.Type

532

Vision Classes

visresult_object.InfoCount Property

Returns, as an Integer value, the number of elements in the vision result object's numeric
information array.

...visresult_object.InfoCount

Prerequisites
None

Parameters
None

Remarks

The visresult_object.InfoCount property returns the number of elements in the
visresult_object.Info array for the current vision result. The index values for accessing
the Info array range from 0 to InfoCount - 1.

Some tools return special numeric data, which is specific to the tool, in the
visresult_object.Info array property. Some of these tools, for example the Edge Finder
tool, can return a variable number of numeric values. The InfoCount property allows a
program to determine how many values are actually returned.

For information on what data a tool returns in this property and the index of the data,
please consult the "PreciseVision Machine Vision System, Introduction and Reference
Manual". In the detailed descriptions for each tool, properties that are returned in the Info
array and their array index values are highlighted.

Examples

Dim vresult As VisResult

Dim ii As Integer

vresult = vobject.Result() " Get a tool"s results

For 1i = O To vresult.InfoCount-1
Console._WriteLine(vresult.Info(ii))

Next ii

See Also

Vision Classes | vision object.Info

533

Vision Classes

visresult_object.InfoString Property

Returns a String value if the vision result object includes text results.

...visresult_object.InfoString

Prerequisites

None

Parameters

None

Remarks

The common results values returned from the Vision Tools are accessed via standard
properties of the VisResult Objects, e.g. the position and orientation of the results are
available from visresult_object.Loc. However, some tools return String data that is
specific to the tool. For example, the Barcode Reader tool returns a String that contains
the type and value of the barcode that was found. This property is used to access such
tool specific text data.

For information on what data a tool returns in this property, please consult the
"PreciseVision Machine Vision System, Introduction and Reference Manual”.

If a vision tool does not return any text data, this property returns an empty String (™).

Examples

Dim vis As New Vision

Dim visRes As New VisResult

vis.Process(''main')

visRes = vis.Result("'read_barcode",1)
Console.WriteLine("'Barcode Value = " & visRes. InfoString)

See Also

534

Vision Classes | visresult object.Info | visresult object.InfoCount | visresult object.Type

Vision Classes

visresult_object.InspectActual Property

Returns a Double that indicates the value of the tool property that was tested in the
vision inspection process.

...visresult_object.InspectActual

Prerequisites

Only returns meaningful data for results generated by a vision tool whose output includes
the InspectActual property in PreciseVision.

Parameters
None
Remarks

This property returns the value of the vision tool property that was tested for the
PreciseVision inspection process. This is the same value as the PreciseVision
InspectActual tool property.

For many PreciseVision tools, a range of acceptable values can be set for a single results
property for the tool. For example, for the general object Finder Tool, the orientation
angle of any located parts can be tested to ensure that they fall within a specified range.

When the inspection criteria is set, each time the tool is executed, it automatically tests
each set of results to see if it satisfies the criteria. InspectActual is the property value
that was tested during this process. InspectPassed indicates the results of the test.

Examples

Dim vresult As VisResult
vresult = vobject.Result()

IT vresult. InspectPassed = False Then " Inspection failed?
IT vresult.InspectActual < 10 Then " By how much?

See Also

Vision Classes | visresults object.InspectPassed

535

Vision Classes

visresult_object.InspectPassed Property

Returns a Boolean that indicates if a property of the vision results satisfied the tool's
vision inspection criteria.

...visresult_object.InspectPassed

Prerequisites

Only returns meaningful data for results generated by a vision tool whose output includes
the InspectPassed property in PreciseVision.

Parameters
None
Remarks

This property returns a True or False indication of whether or not the set of results from a
vision tool satisfied the specified inspection criteria. This is the same value as the
PreciseVision InspectPassed tool property.

For many PreciseVision tools, a range of acceptable values can be set for a single results
property for the tool. For example, for the general object Finder Tool, the orientation
angle of any located parts can be tested to ensure that they fall within a specified range.

When the inspection criteria is set, each time the tool is executed, it automatically tests
each set of results to see if it satisfies the criteria and sets the value of InspectPassed
appropriately. If the inspection fails, the tool is still processed in the normal fashion as
well as any tools that are dependent upon the failed result. However, both the failed tool
and any dependent tools will have their InspectPassed set to False.

As a convenience, the tool property value that was tested is returned in
visresults_object.InspectActual.

Examples

Dim vresult As VisResult
vresult = vobject.Result()

IT vresult. InspectPassed = False Then " Inspection failed?
IT vresult.InspectActual < 10 Then " By how much?

See Also

Vision Classes | visresults object.InspectActual

536

Vision Classes

visresult_object.Loc Property

Returns a Location Object containing the position and orientation information from a
vision result object.

...visresult_object.Loc

Prerequisites

Only returns meaningful data for results generated by a vision tool whose output includes
the ResultAngle, ResultXPos, and ResultYPos properties in PreciseVision.

Parameters
None
Remarks

This property returns the position and orientation results data from a vision tool and
provides the information in the form of a Cartesian Location Object. The position and
orientation data are derived from the PreciseVision ResultXPos, ResultYPos and
ResultAngle tool properties.

While not all vision tools generate position and orientation data, many do. For example,
the general purpose object Finder tool returns the position and orientation of matched
parts. Likewise, the Point-Line Frame tool returns the position and orientation of its
computed reference frame.

To allow this data to be easily utilized within a GPL procedure, the Loc property returns a
Cartesian Location Object that is computed from the PreciseVision tool results but has
been translated into the robot's world reference frame. This translation is a defined by
PreciseVision's camera calibration data and the camera mounting (e.g., stationary, or
mounted on the robot). This Location can then be used as the reference frame for
gripping a part or can be combined with other data to perform further analysis.

Please see the PreciseVision manual for information on which vision tools return these
properties and how to interpret this data.

Examples

Dim vresult As VisResult

Dim visloc As Location

Dim x, y, z As Double

vresult = vobject.Result() " Get a tool*"s results

visloc = vresult.Loc " Get position/orientation output
x = visloc.X " Vision "ResultXPos"

y = visloc.Y " Vision "ResultYPos"

z = visloc.Roll " Vision "ResultAngle”

537

Vision Classes

See Also

Vision Classes | visresult_object.Info

538

Vision Classes

visresult_object.ProcessID Property

Returns the ID of the vision process (as an Integer value) that generated the vision result
...visresult_object.ProcessID

Prerequisites

Requires PreciseVision version 3.1.0.11 or later to obtain meaningful values.
Parameters

None
Remarks

This property allows you to retrieve the ID of the vision process that generated the vision
result. This ID allows you to keep track of which process generated which result in
situations where multiple vision processes are being run by your application.

The process ID will be the same value as the ID supplied as an optional argument when
the process was executed by the Vision Process method.

You must be using PreciseVision version 3.1.0.11 or later to obtain meaningful values. If
you are using an older PreciseVision system, this property always returns 0.

Examples

Dim vobject As New Vision
Dim result As VisResult
vobject._Process('find_part', 123)
result = vobject.Result()
Console.Writeline("'Process ID
" Outputs "Process ID

" & CStr(result.Processld))
123"

See Also

Vision Classes | vision _object.Process

539

Vision Classes

visresult_object.Type Property

Returns an Integer type code from a vision result object.
...visresult_object.Type

Prerequisites
None

Parameters
None

Remarks

This method returns the numeric Type code for a vision result object. Currently, all vision
results are of type 0, so this property always returns O.

This property will be used in the future to enhance the VisResult class.

Examples

Dim vresult As VisResult
vresult = vobject.Result()
IT vresult.Type = 0 Then

See Also

Vision Classes

540

XML Classes

XML Classes Summary

The following pages provide detailed information on the classes used to create, parse,
and modify XML (eXtensible Markup Language) documents. These classes handle XML
text documents by converting them to and from a tree structure that is stored in the
controller's memory. A parsed XML document tree consists of nodes for items in the
document, arranged in a tree that reflects how items in the text document are nested.
The tree is constructed using a subset of the Document Object Model (DOM) Core
Interfaces as described in: http://www.w3.org/TR/REC-DOM-Level-1 and methods similar
to those found in Visual Basic.NET.

There are two built-in classes in GPL to handle XML document objects.

XmlDoc Class objects operate on the top-level of a DOM tree, which contains an entire
XML document. The nodes within the tree contain the data from the document. The
XmIDoc methods deal with the document as a whole, for example loading it into memory
or saving it to a file. There is one and only one XmIDoc object for each separate XML
document, although there can be multiple pointers to this object. An XML DOM tree
cannot exist without an XmIDoc object.

XmINode Class objects point to individual nodes in a DOM document tree. Its methods
support accessing or modifying node data or properties, and adding or removing nodes in
the tree structure. These objects point to DOM nodes but do not actually contain the
DOM nodes. When an XmINode object is created or destroyed, the underlying DOM
nodes are not affected provided that they are part of a DOM tree.

XmlDoc Class Member Type Description
Constructor |Creates a new document tree with the
New o
— Method specified name.
Returns a new XmINode obiject for this
xmldoc _obj.CreateNode |Method document with the specified type, and
name.
xmIDoc.DecodeEntities Shared Conyert; a String containing encoded XML
Method entities into raw text.
xmldoc_obj. Returns the XmINode element that is the
Method
DocumentElement root of the document.
Shared Converts special characters in a String to

XmIDoc.EncodeEntities

Method XML entities.

Returns the last parser error code number,
or O if no error.

Loads and parses an XML text document
from a file and returns the created XmlDoc
DOM tree object.

xmldoc_obj.ErrorCode |Get Property

Shared

XmIDoc.LoadFile Method

541

http://www.w3.org/TR/REC-DOM-Level-1

XML Classes

542

XmIDoc.LoadString

Shared
Method

Parses an XML text document from a
String and returns the created XmlDoc
DOM tree object.

xmldoc obj.Message

Get Property

Returns the last parser error message, or
if no error.

xmldoc obj.SaveFile

Method

Converts a DOM tree document to the XML
text format and writes the data to a file.

xmldoc obj.SaveString

Method

Converts a DOM tree document to the XML
text format and writes the data to a String.

The XmINode class interface is summarized in the table below:

XmINode Class Member Type Description

minode obi.AddAttribute Method ﬁ\g((jj: an attribute node as a child of this

kminode obj.AddElement Method Adds an element nod_e as a child of this
node. Includes an optional value.
IAdds an element node as a child of this

xmlnode obj.AddElementNode[Method hode. Returns an XmINode ot_)Ject for
the new node. Includes an optional
value.

. . Appends a new child node as the last
xminode obj.Appendchild Method child of this node. Merges text nodes.
kminode obi.ChildNodeCount Get Returns the number of children of this

Property |node.
Returns a clone of this node. Optionally
xmlnode obj.Clone Method [recursively clones the subtree under this
node.
xmlnode obj.FirstChild Method [Returns the first child of this node.
Returns a String containing the value of
xmlnode obj.GetAttribute Method the specified attribute that is a child of
this node.
Returns the node corresponding to the
xmlnode obj.GetAttributeNode[Method [specified attribute that is a child of this
node.
Returns a String containing the value of
xmlnode obj.GetElement Method the specified element that is a child of
this node.
Returns the node corresponding to the
xminode obj.GetElementNode [Method |specified element that is a child of this
node.
kminode obi.HasAttribute Method Retu_rns Tru_e if the specified attribute is
a child of this node.
kminode obj.HasChildNodes Get Ret_urns Trl_Je if the node has any non-
Property [attribute child nodes.
kminode obj.HasElement Method Re_turns T_rue if a specified element is a
child of this node.
Inserts a new node as a child of this
xmlnode obj.InsertAfter Method |node after a referenced child node.
Merges text nodes.
Inserts a new node as a child of this
xmiInode obj.InsertBefore Method [node before a referenced child node.

Merges text nodes.

XML Classes

xminode objLastChild Method [Returns the last child of this node.

xmlnode obj.Name Get Returns the node name as a String.
Property

xminode obj.NextSibling Method |Returns the next sibling of this node.

kminode obj.OwnerDocument [Method Eg(’;térns the XmIDoc associated with this

xminode obj.ParentNode Method [Returns the parent of this node.

xminode obj.PreviousSibling |Method |Returns the previous sibling of this node.

xmlnode

obj.RemoveAttribute

Method

Removes a specified attribute from this
node's children.

Removes a child node from the list of

xmInode obj.RemoveChild Method children for this node.
minode obj.RemoveElement |[Method Rem9ves_a specified element from this
node's children.
xmlnode obj.ReplaceChild Method Re_places an old child node with a new
child node.
. . Sets the value of an existing specified
xminode obj.SetAttribute Method attribute that is a child of this node.
. Sets the value of an existing specified
xminode obj.SetElement Method element that is a child of this node.
. Get .
xmlnode obj.Type Property Returns the node type as a String.
. Get/Set |Returns the node value as a String or
xmlnode obj.Value
Property [sets the node value.

543

XML Classes

New XmIDoc Constructor

Constructor for creating a new XML document tree object.
xmldoc_object = New XmlIDoc(document_name)

Prerequisites
None
Parameters
document_name

A required String expression that specifies the name of the top-level
section in the new document. The name must not contain any special
characters.

Remarks

This method creates a new XML DOM document tree including its top-level document
node. It also creates a single element node with the name document_name as a child of
the document node.

The New constructor only needs to be called if you are creating a new document from
within GPL. You do not need to invoke it before calling XmIDoc.LoadFile or
XmIDoc.LoadString, which automatically create a new document tree object.

Examples

Dim doc As XmlDoc
doc = New XmIDoc(''my_doc'™)

See Also

XML Classes | XmlIDoc.LoadFile | XmIDoc.LoadString

544

XML Classes

xmldoc_object.CreateNode Method

Creates and returns a new node object that can be added to a DOM tree.

... xmldoc_object.CreateNode(type, name)

Prerequisites
None

Parameters

type

A required String expression that specifies the type of the node to be
created. The String value must be one of those shown below in the
Remarks section.

name

A String expression that specifies the name of the node to be created.
The name is required for some node types and ignored for others. See
the table below in the Remarks section.

Remarks

This method creates a new node for a DOM tree, but does not add it to the tree. The
node type is specified by the type parameter as shown in the following table.

type String value

name
parameter

Description

attribute

Required

/An attribute. Normally has either a document or
element as its parent. In XML data, attributes are
embedded inside the element name start tag. For
example an attribute named color of element
sample appears as <sample color="value">

cdatasection

Ignored

/A CDATA text node permits special characters in
its data section without requiring that they be
encoded. The data starts with “<ICDATA[" and
ends with “]]>"

comment

Ignored

A special text node that contains a comment not
considered part of the document data. The
comment data begins with “<?--“ and ends with “-
o

element

Required

The basic node type. An element corresponds to

an XML tag that begins with “<”. For example the

545

XML Classes

element named sample begins with “<sample>"
and ends with “</sample>”

/A special text node that contains processor-
processinginstruction] Required [specific information. The information data begins
with "<?" and ends with "?>".

The data contents of an element or attribute. It
text Ignored |holds whatever is between two element tags or
the “value” of an attribute.

To be meaningful, the new node must be added to the tree using one of the XmINode
methods: AppendChild, InsertAfter, InsertBefore,or ReplaceChild.

For most applications, it is easier to build a tree by using the XmINode methods
(AddElement, AddElementNode and AddAttribute) rather than using CreateNode.

Examples

Dim doc As XmlDoc

Dim root As XmINode

Dim elem As XmINode

Dim text As XmINode

doc = New XmlIDoc(*'my_doc'™)
root = doc.DocumentElement

elem = doc.CreateNode('element™, *sectionl')
text = doc.CreateNode("text')
text.value = "This is the data for section 1"

elem.AppendChild(text)
root.AppendChild(elem)

See Also

546

XML Classes | xminode object.AddAttribute | xmlnode object. AddElement

xmlnode object.AddElementNode

XML Classes

XmIDoc.DecodeEntities Shared Method

Returns a String produced by decoding an XML entry that contains special characters
that have been encoded to avoid errors in XML text files.

... XmlIDoc.DecodeEntities(input_string)

Prerequisites

None
Parameters
input_string
A required String expression that contains the text to be decoded.
Remarks

Names and data within an XML text document must not contain the special characters
shown in the table below. So, these special characters must be encoded if they are to be
included in an XML entry. For efficiency the XML methods in GPL do not automatically
check for these characters since their use is not very common.

If you need to include these characters, this method can be used to decode any data
obtained from a GPL DOM document tree that includes encoded versions of these
special characters. To encode data before placing it in an XML document, see the
method XmIDoc.EncodeEntities.

This method converts the input_string value, decoding any encoded characters that it
encounters into standard UTF-8 characters according to the table below, and returns the
result as a String value. This method does not convert 8-bit ASCII (e.g. ISO-8859-1) to

UTF-8.
Character | Hex value Name Encoding
" &H22 double quote "
& &H26 ampersand &
' &H27 apostrophe '
< &H3C less than <
> &H3E greater than >
Examples

Dim root As XmINode
Dim ss As String

547

XML Classes

ss = root.GetElement(*'sectionl™)
ss = XmlDoc.DecodeEntities(ss)
See Also

XML Classes |XmlIDoc.EncodeEntities

548

xmldoc_object.DocumentElement Method

Returns the DOM document tree top-level element as an XmINode object.
...xmldoc_object.DocumentElement

Prerequisites
None

Parameters
None

Remarks

All DOM documents, whether created by the XmIDoc constructor (New),
XmIDoc.LoadFile, or XmIDoc.LoadString, have a single top-level (or root) element
whose descendents contain the rest of the document tree.

This method returns that top-level element as an XmINode object.

Examples

Dim doc As XmlDoc

Dim root As XmINode

doc = New XmIDoc(*'my_doc'™)

root = doc.DocumentElement
Console.Writeline(root.Name) " Displays "my_doc"

See Also

XML Classes | XmIDoc New | XmlIDoc.LoadFile | XmIDoc.LoadString

XML Classes

549

XML Classes

XmIDoc.EncodeEntities Shared Method

Returns a String generated by encoding any special characters in an input String

expression, which permits their use in XML entity values.

... XmlIDoc.EncodeEntities(input_string)

Prerequisites
None
Parameters

input_string

A required String expression that contains the characters to be encoded.

Remarks

Names and data within an XML text document must not contain the special characters
shown in the table below. So, these special characters must be encoded if they are to be
included in an XML entry. For efficiency the XML methods in GPL do not automatically
check for these characters since their use is not very common.

If you need to include these characters, this method can be used to encode the special
characters before they are inserted into a GPL DOM document tree. To decode data after
it has been extracted from a GPL DOM tree, see the method XmlIDoc.DecodeEntities.

This method converts the input_string value, automatically encoding any special UTF-8
characters that it encounters into equivalent values according to the table below, and
returns the result as a String value. This method does not convert UTF-8 to 8-bit ASCII

(e.g. 1SO-8859-1).

Character | Hex value Name Encoding
" &H22 double quote "
& &H26 ampersand &
' &H27 apostrophe '
< &H3C less than <
> &H3E greater than >

Examples

Dim root As XmINode
Dim ss As String

550

XML Classes

ss = XmlDoc.EncodeEntities(ss)
ss = root.SetElement('sectionl", ss)
See Also

XML Classes |XmlIDoc.DecodeEntities

551

XML Classes

xmldoc_object.ErrorCode Property

Returns the error code for the most recent major operation on a DOM document tree.
...xmldoc_object.ErrorCode

Prerequisites
None

Parameters
None

Remarks

When a major operation is performed on an XML document tree, for example creating it
or storing it, the error status is saved within the corresponding XmIDoc object. This
property returns the GPL error code corresponding to that status or 0O if the last major
operation was successful.

This property should always be checked after using the XmlIDoc.LoadString method.

Many internal XML processing errors are returned as -799, "XML error". If this error
occurs, the property xmldoc_object.Message should be used to determine the details of
the error.

Examples

Dim doc As XmlDoc
Dim instr As String

doc = XmlDoc.LoadString(instr) " Parse the input
IT (doc.ErrorCode <> 0) Then " Check for errors
Console.Writeline("Input error " & CStr(doc.ErrorCode) _
& ", " & doc.Message)
End If
See Also

XML Classes | xmldoc object.Message

552

XML Classes

XmlIDoc.LoadFile Shared Method

Loads and parses an XML text document from a file and returns the created XmIDoc
DOM tree object.

... XmlIDoc.LoadFile(input_file, options)

Prerequisites

None
Parameters
input_file
A required String expression that contains the name of the XML data file
to be read and parsed.
options
An optional numeric expression that specifies a bit mask of parsing-
related options. The bits in the mask are defined as shown in the table
below. If omitted, all option bits are assumed to be 0.
Remarks

This method creates a DOM tree in memory from a file containing XML text data. If it
completes successfully, it returns the XmlIDoc object for the DOM tree that contains all of
the parsed data. The various XmINode methods may then be used to access the data.

This method only throws an exception in the case of severe errors. Otherwise, it returns
the XmlIDoc object that includes any parsing errors. To check if the XML data has been
properly parsed, you must verify that the xmldoc_object.ErrorCode method value is 0. If
non-zero, check the error code and the xmldoc_object.Message values to determine why
the parsing failed.

The options parameter is composed of bit flags that are defined in the table below. Bits
not shown in the table should be set to 0.

Bit Mask Name Description
&HO1 Recover Attempt to continue parsing even if an error
oCccurs.
&H20 Suppress errors |Suppress error reporting.
&H40 Suppress warnings |Suppress warning reporting.

553

XML Classes

Remove blank

&H100
nodes

Remove nodes that contain only white

space.

Examples

Dim doc As XmlDoc

doc = XmlDoc.LoadFile(*'/flash/test.xml'") * Parse the file

IT doc.ErrorCode <> 0 Then

" Check for errors

Console.Writeline("Input error " & CStr(doc.ErrorCode) _
& ", " & doc.Message)

End If

See Also

XML Classes | XmIDoc New | xmldoc object.ErrorCode | XmIDoc.LoadString

xmldoc object.Message

554

XML Classes

XmlIDoc.LoadString Shared Method

Parses an XML text document from a String and returns the created XmIDoc DOM tree
object.

... XmlIDoc.LoadString(input_string, options)

Prerequisites

None
Parameters
input_file
A required String expression that contains the XML data to be parsed.
The string may be very long.
options
An optional numeric expression that specifies a bit mask of parsing-
related options. The bits in the mask are defined as shown in the table
below. If omitted, all option bits are assumed to be 0.
Remarks

This method creates a DOM tree in memory from the XML text data contained in a
String. If it completes successfully, it returns the XmIDoc object for the DOM tree that
contains all of the parsed data. The various XmINode methods may then be used to
access the data.

This method only throws an exception in the case of severe errors. Otherwise, it returns
an XmlDoc object that includes any parsing errors. To check if the XML data has been
properly parsed, you must verify that the xmldoc_object.ErrorCode method value is 0. If
non-zero, check the error code and the xmldoc_object.Message values to determine why
the parsing failed.

The options parameter is composed of bit flags that are defined in the table below. Bits
not shown in the table should be set to 0.

Bit Mask Name Description
&HO1 Recover Attempt to continue parsing even if an error
oCccurs.
&H20 Suppress errors |Suppress error reporting.
&H40 Suppress warnings |Suppress warning reporting.

555

XML Classes

Remove blank |Remove nodes that contain only white

&H100
nodes space.

Examples

Dim doc As XmlDoc
Dim instr As String = """
Dim line As String

" Read the input file

Dim inf As New StreamReader(*'/flash/test.xml')

While inf.Peek() >=0 * Check if end-of-file
line = inf.Readline()
instr &= line

End While

inf.Close()

doc = XmlDoc.LoadString(instr) " Parse the input

IT (doc.ErrorCode <> 0) Then " Check for errors
Console.Writeline("Input error " & CStr(doc.ErrorCode) _

& ", " & doc.Message)
End If

See Also

XML Classes | XmIDoc New | xmldoc_object.ErrorCode | XmIDoc.LoadFile
xmldoc object.Message

556

XML Classes

xmldoc_object.Message Property

Returns the detailed error message for the most recent major operation on a DOM
document tree.

...xmldoc_object.Message

Prerequisites
None

Parameters
None

Remarks

When a major operation is performed on an XML document tree, for example creating it
or storing it, the error status is saved within the corresponding XmIDoc object. If an error
occurs, as indicated by xmldoc_object.ErrorCode being non-zero, this property returns a
detailed message.

Many internal XML processing errors return an xmldoc_object.ErrorCode of -799, "XML
error”. If this error occurs, the xmldoc_object.Message property should be used to
determine the details of the error.

Examples

Dim doc As XmlDoc
Dim instr As String

doc = XmlDoc.LoadString(instr) " Parse the input
IT (doc.ErrorCode <> 0) Then " Check for errors
Console.Writeline("Input error " & CStr(doc.ErrorCode) _
& ", " & doc.Message)
End If
See Also

XML Classes | xmldoc object.ErrorCode

557

XML Classes

xmldoc_object.SaveFile Method

Converts a DOM tree document to the XML text format and writes the data to a file.
xmldoc_object.SaveFile(output_file, options)

Prerequisites

None
Parameters
output_file
A required String expression that contains the name of the file to receive
the XML text output data.
options
An optional numeric expression that specifies a bit mask of format-
related options. The bits in the mask are defined as shown in the table
below. If omitted, all option bits are assumed to be 0.
Remarks

This method creates XML text data from a DOM tree and writes it to a file. It throws an
exception if any error occurs during conversion. If an error occurs, check the values of
xmldoc_object.ErrorCode and xmldoc_object.Message to determine why the conversion
failed.

The options parameter is composed of bit flags that are defined in the table below. Bits
not shown in the table should be set to 0.

Bit Mask Name Description
&HO1 Format Forma_t the output by adding new-lines and
indenting nested elements.
Suppress output of the standard XML
&HO02 Suppress declarations |[declarations comments at the start of the
output.
&HO04 Suppress empty tags |Suppress output of empty sections.

Examples

Dim doc As XmlDoc
doc = New XmlIDoc(**My_doc'™)

558

XML Classes

(-joc-:.éaveFi le("'/flash/xml/test_xml')
See Also

XML Classes | xmldoc_object.ErrorCode | XmIDoc.LoadFile | xmldoc object.Message |
xmldoc_object.SaveString

559

XML Classes

xmldoc_object.SaveString Method

Converts a DOM tree document to the XML text format and writes the data to a String.
xmldoc_object.SaveString(output_string, options)

Prerequisites
None
Parameters
output_string

A required ByRef String variable that receives the XML formatted text
output. The string value may be very long.

options

An optional numeric expression that specifies a bit mask of format-
related options. The bits in the mask are defined as shown in the table
below. If omitted, all option bits are assumed to be 0.

Remarks

This method creates XML text data from a DOM tree and writes it to a String. It throws
an exception if any error occurs during conversion. If an error occurs, check the values of
xmldoc_object.ErrorCode and xmldoc_object.Message to determine why the conversion
failed.

The options parameter is composed of bit flags that are defined in the table below. Bits
not shown in the table should be set to 0.

Bit Mask Name Description
&HO1 Format Forma_t the output by adding new-lines and
indenting nested elements.
Suppress output of the standard XML
&HO02 Suppress declarations |[declarations comments at the start of the
output.
&HO04 Suppress empty tags |Suppress output of empty sections.

Examples

Dim doc As XmlDoc
Dim ss As String
doc = New XmIDoc(**My_doc'™)

560

XML Classes
&oé.éaveString(ss)
Console.Writeline(ss)
See Also

XML Classes | xmldoc_object.ErrorCode | XmIDoc.LoadString | xmldoc _object.Message |
xmldoc_object.SaveFile

561

XML Classes

xmlnode object.AddAttribute Method

Creates a new XML attribute and appends it as a child of the current tree node.
xmlnode_object. AddAttribute(attribute, value)

Prerequisites

The current node must be of type "element” or "document".

Parameters
attribute
A required String expression that specifies the name of the attribute to
be created.
value
An optional String expression that specifies the value of the attribute to
be created.
Remarks

This is a convenience method that creates, initializes, and links a node to add an attribute
to a DOM tree. The new attribute appears as the new last child of xminode_object.

Examples

Dim doc As XmlDoc

Dim root As XmINode

doc = New XmIDoc(*'my_doc'™)

root = doc.DocumentElement
root.AddAttribute(*'color', "orange')

See Also

XML Classes | xmldoc _object.CreateNode | xminode object.AddElement
xmlnode object.SetAttribute

562

XML Classes

xmlnode object.AddElement Method

Creates a new XML element and appends it as a child of the current tree node.
xmlnode_object. AddElement(element, value)

Prerequisites

The current node must be of type "element” or "document".

Parameters
element
A required String expression that specifies the name of the element to
be created.
value
An optional String expression that specifies the value of the element to
be created.
Remarks

This is a convenience method that creates, initializes, and links a node to add an element
to a DOM tree. The new element appears as the new last child of xmInode_object.

Examples

Dim doc As XmlDoc

Dim root As XmINode

doc = New XmIDoc(*'my_doc'™)

root = doc.DocumentElement
root.AddElement(*'sectionl’, "Data for section 1')

See Also

XML Classes | xmldoc object.CreateNode | xmInode object.AddAttribute
xmlnode object.SetElement

563

XML Classes

xmlnode object. AddElementNode Method

Creates a new XML element and appends it as a child of the current node. Returns an
XmINode object for the newly created element node.

...xmlInode_object. AddElementNode(element, value)

Prerequisites

The current node must be of type "element” or "document".

Parameters
element
A required String expression that specifies the name of the element to
be created.
value
An optional String expression that specifies the value of the element to
be created.
Remarks

This method is identical to AddElement except that it also returns an XmINode object for
the newly created element. This new node may be useful in creating additional levels in
your document tree.

This is a convenience method that creates, initializes, and links a node to add an element
to a DOM tree. The new element appears as the new last child of xmIinode_object.

Examples

Dim doc As XmlDoc

Dim root As XmINode

Dim elem As XmINode

doc = New XmIDoc(*'my_doc'™)
root = doc.DocumentElement

elem = root.AddElementNode(''sectionl™, '"'Data for section 1)
elem_AddElement('sectionl-1", "Data for sub-section 1-1'")
See Also

XML Classes | xmldoc object.CreateNode | xmlnode object.AddElement
xmlnode object.SetElement

564

XML Classes

xmlnode object. AppendChild Method

Appends a new node as the new last child of the current node. Text nodes are merged as
appropriate.

xmlnode_object. AppendChild(new_node)

Prerequisites

None
Parameters
new_node
A required XmINode object that is to be appended.
Remarks

This method appends a node to the specified hode. The new node becomes the last child
of the specified node. If a text node is being appended to an element whose last child is
already a text node, the new text is merged with the old text node and the new node is
freed.

The node to be added may be created by XmlIDoc.CreateNode or may have been
removed from the tree using RemoveChild. If you are appending a new attribute or
element, it is more convenient to use AddAttribute or AddElement.

You cannot append a node that is a member of one document tree to a different
document tree. Use the Clone method to make a copy of a node from a different
document.

Examples

Dim doc As XmlDoc

Dim root As XmINode

Dim elem As XmINode

Dim text As XmINode

doc = New XmlIDoc(*'my_doc'™)
root = doc.DocumentElement

elem = doc.CreateNode('element™, *'sectionl')
text = doc.CreateNode(""text'™)
text.value = "This is the data for section 1"

elem_AppendChild(text)
root.AppendChild(elem)

See Also

565

XML Classes

XML Classes | xmldoc_object.CreateNode | xmlnode object. AddAttribute |
xmlnode object.AddElement

566

XML Classes

xmlnode_object.ChildNodeCount Property

Returns the number of children of the current node.
...xmInode_object.ChildNodeCount

Prerequisites
None

Parameters
None

Remarks

This property counts the number of children of a node. Attributes are not considered
children and are not included in this count.

The method xmlnode_object.HasChildNodes is more efficient if you only want to know if
a node has children but do not care how many it has.

Examples

Dim doc As XmlDoc

Dim root As XmINode

doc = New XmIDoc(*'my_doc'™)
root = doc.DocumentElement

root.AddElement(*'sectionl’, "Data for section 1')
Console.Writeline(root.ChildNodeCount) * Output is "1"
See Also

XML Classes | xmlnode object.HasChildNodes

567

XML Classes

xmlnode_object.Clone Method

Creates a new XML node that is a clone of the current node.
...xmInode_object.Clone(deep, xmldoc_object)

Prerequisites
None

Parameters
deep

A required Boolean numeric expression that determines if a deep or
shallow copy of the node should be made.

xmldoc_object

An optional XmIDoc object that specifies the document tree that will
contain the new node. If omitted, the clone will be a member of the same
document tree as the original copied node.

Remarks

This method creates a copy of an existing node and also provides a means for copying
nodes to a new document tree.

If the deep parameter is False, only the current node is copied. If the deep parameter is
True, all nodes beneath the current node are copied recursively to create a new subtree.

Examples

Dim doc As XmlDoc

Dim root As XmINode

Dim eleml As XmlINode

Dim elem2 As XmINode

Dim subl As XmINode

doc = New XmIDoc(*'my_doc™)
root = doc.DocumentElement

eleml = root.AddElementNode(''sectionl', *"Data for section 1')
subl = eleml.AddElementNode(*'section-a', "Sub-section data')
elem2 = root.AddElementNode(''section2', '"'Data for section 2')

" Duplicate section-a under section 2
elem2_AppendChild(subl.Clone(True))

See Also

568

XML Classes

XML Classes | xmldoc_object.CreateNode

569

XML Classes

xmlnode object.FirstChild Method

Returns the first child node of the current node.
...xmInode_object.FirstChild

Prerequisites
None

Parameters
None

Remarks

This method returns a new XmINode object that corresponds to the first child node of the
current node. If the current node does not have any children, the returned object is
Nothing

This method does not create a new node in the DOM tree.

Examples

Dim doc As XmlDoc

Dim root As XmINode

Dim eleml As XmlINode

Dim elem2 As XmINode

doc = New XmlIDoc(*'my_doc'™)

root = doc.DocumentElement

eleml = root.AddElementNode(''sectionl’, '"Data for section 1')
elem2 = root.AddElementNode(*'section2', "Data for section 2')
Console.Writeline(root.FirstChild.Name) " Displays "sectionl"

See Also

XML Classes | xminode object.LastChild | xmlnode object.NextSibling
xmlnode object.ParentNode | xmlnode object.PreviousSibling

570

XML Classes

xmlnode object.GetAttribute Method

Returns a String containing the value of an existing attribute of the current node.
... xmInode_object.GetAttribute(attribute)

Prerequisites

The current node must be of type "element” or "document".

Parameters
attribute
A required String expression that specifies the name of the attribute to
be accessed.
Remarks

This is a convenience method that finds a named attribute and returns the value of the
attribute. The attribute must be an immediate child of the current node.

If the name is not found, an exception is thrown.

Examples

Dim doc As XmlDoc

Dim root As XmINode

doc = New XmIDoc(*'my_doc'™)

root = doc.DocumentElement

root.AddAttribute(*'color', "orange')
Console.Writeline(root.GetAttribute('color')) "Output is "orange"

See Also

XML Classes | xmlnode object.GetAttributeNode | xmlnode object.GetElement
xmlnode object.SetAttribute

571

XML Classes

xmlnode object.GetAttributeNode Method

Returns the attribute node that is a child of the current node and has the specified
attribute name.

... XxmInode_object.GetAttributeNode(attribute)

Prerequisites

The current node must be of type "element” or "document".

Parameters
attribute
An optional String expression that specifies the name of the attribute to
be found. If the String is omitted or empty ("), the node for the first
attribute is returned.
Remarks

This is a convenience method that finds an attribute node that has a specified attribute
name. A new XmINode object corresponding to the attribute is returned.

If the attribute parameter is omitted or empty, the first attribute of the current node is
returned. If there are no attributes for the current node, a Nothing object is returned.

If the attribute parameter is specified but no matching attribute is found, an exception is
thrown.

The attribute node must be an immediate child of the current node.

Examples

Dim doc As XmlDoc

Dim root As XmINode

Dim attr As XmINode

doc = New XmIDoc(*'my_doc'™)

root = doc.DocumentElement
root.AddAttribute(*'color', "orange')

attr = root.GetAttributeNode(*'color™)
Console._Writeline(attr._Name) “Output is "color™

See Also

XML Classes | xmlnode object.GetAttribute | xmlnode object.GetElementNode
xmlnode object.SetAttribute

572

XML Classes

xmlnode_ object.GetElement Method

Returns a String that contains the value of a child element of the current node.
...xmlInode_object.GetElement(element)

Prerequisites

The current node must be of type "element” or "document".

Parameters
element
A required String expression that specifies the name of the child
element to be found.
Remarks

This is a convenience method that finds a named element. The element must be an
immediate child of the current node.

If an element with the specified name is not found, an exception is thrown.

Examples

Dim doc As XmlDoc

Dim root As XmINode

doc = New XmIDoc(*'my_doc'™)

root = doc.DocumentElement

root.AddElement(*'sectionl’, "data')
Console.Writeline(root.GetElement("'sectionl'™)) " Output is "data"

See Also

XML Classes | xmlnode object.GetAttribute | xmlnode object.GetElementNode
xmlnode object.SetElement

573

XML Classes

xmlnode object.GetElementNode Method

Returns the element node that is a child of the current node and has the specified
element name.

...xmlInode_object.GetElementNode(element)

Prerequisites

The current node must be of type "element” or "document".

Parameters
element
An optional String expression that specifies the name of the child
element to be found. If the String is omitted or empty ("), the node for
the first child element is returned.
Remarks

This is a convenience method that finds a named child element node. A new XmINode
object corresponding to the element is returned.

If the element parameter is omitted or empty, the first child element of the current node is
returned. If there are no child elements for the current node, a Nothing object is returned.

If the element parameter is specified but no such element is found, an exception is
thrown.

The element must be an immediate child of the current node.

Examples

Dim doc As XmlDoc

Dim root As XmINode

Dim elem As XmINode

doc = New XmIDoc(*'my_doc'™)

root = doc.DocumentElement
root.AddElement(*'sectionl’, "data')

elem = root.GetElementNode(*'sectionl™™)
Console.Writeline(elem_Name) " Output is "sectionl"

See Also

XML Classes | xmlnode object.GetAttributeNode | xmlnode object.GetElement
xmlnode object.SetElement

574

XML Classes

xmlnode_ object.HasAttribute Method

Returns True if the named attribute node is a child of this node.
... Xxminode_object.HasAttribute(attribute)

Prerequisites

The current node must be of type "element” or "document”.

Parameters
attribute
A required String expression that specifies the name of the child
attribute to be found.
Remarks

This is a convenience method that finds a named attribute node. The attribute must be an
immediate child of the current node.

If the name is found, a True value is returned. Otherwise, a False value is returned.

Examples

Dim doc As XmlDoc

Dim root As XmINode

doc = New XmIDoc(*'my_doc'™)

root = doc.DocumentElement

root.AddAttribute(*'color', "orange')
Console.Writeline(root.HasAttribute('color')) " Output is "-1"

See Also

XML Classes | xmlnode object.GetAttribute | xmlnode object.GetAttributeNode
xmlnode object.HasElement

575

XML Classes

xmlnode_ object.HasChildNodes Property

Returns True if the current node has any non-attribute child nodes.

... XxmInode_object.HasChildNodes

Prerequisites

None

Parameters

None

Remarks

This property returns True if the current node has any children, otherwise it returns
False. Attributes are not considered children and are not included in this test.

To determine how many children a node has, use the method
xmldoc_object.ChildNodeCount.

Examples

Dim doc As XmlDoc

Dim root As XmINode

doc = New XmIDoc(*'my_doc'™)

root = doc.DocumentElement

root.AddElement(*'sectionl’, "Data for section 1')
Console.Writeline(root.HasChildNodes) * Output is "-1"

See Also

576

XML Classes | xmIinode object.ChildNodeCount

XML Classes

xmlnode object.HasElement Method

Returns True if a specified element is a child of the current node.
... xmInode_object.HasElement(element)

Prerequisites

The current node must be of type "element” or "document".

Parameters
element
A required String expression that specifies the name of the element to
be found.
Remarks

This is a convenience method that finds a named element. The element must be an
immediate child of the current node.

If an element with the specified name is found, a True value is returned. Otherwise, a
False value is returned.

Examples

Dim doc As XmlDoc

Dim root As XmINode

doc = New XmIDoc(*'my_doc'™)

root = doc.DocumentElement

root.AddElement(*'sectionl', "Data for section 1')
Console.Writeline(root.HasElement("'sectionl')) * Output is "-1"

See Also

XML Classes | xmIlnode object.GetElement | xmInode object.GetElementNode
xmlnode object.HasAttribute

577

XML Classes

xmlnode_object.InsertAfter Method

Inserts a new node, after a specified node, in the list of children of the current node. Text
nodes are merged as appropriate.

xmlnode_object.InsertAfter(new_child, ref_child)

Prerequisites

None
Parameters
new_child
A required XmINode object that is to be inserted into the list of children.
ref_child
An optional XmINode object. If specified, it must be an existing child of
the current node.
Remarks

The new_child node is inserted as a child of the current node, and a sibling of the
ref_child node. It is inserted immediately after the ref_child node in the DOM tree.

If ref_child is omitted, the new_child is added to the end of the list of children.

The node to be added may be created by XmlIDoc.CreateNode or may have been
removed from the tree using RemoveChild.

You cannot insert a node that is a member of one document tree into a different
document tree. Use the Clone method if you wish to insert a copy of a node from a
different document.

If a text node is inserted next to another text node, the new text is merged with the old
text node and the new node is freed.

Examples

Dim doc As XmlDoc

Dim root As XmINode

Dim eleml As XmINode

Dim elem2 As XmlINode

Dim text As XmINode

doc = New XmIDoc(*'my_doc'™)

578

XML Classes

root = doc.DocumentElement

eleml = doc.CreateNode('element', "sectionl')
text = doc.CreateNode(""text'™)
text.Value = "This is the data for section 1"

eleml.AppendChild(text)
root.AppendChild(eleml)

elem2 = doc.CreateNode("element', "'section2')
root. InsertAfter(elem2, eleml)

See Also

XML Classes | xmldoc_object.CreateNode | xmInode object.AppendChild |
xmlnode object.InsertBefore

579

XML Classes

xmlnode_ object.InsertBefore Method

Inserts a new node, before a specified node, in the list of children of the current node.
Text nodes are merged as appropriate.

xmlnode_object.InsertBefore(new_child, ref_child)

Prerequisites

None
Parameters
new_child
A required XmINode object that is to be inserted into the list of children.
ref_child
An optional XmINode object. If specified, it must be an existing child of
the current node.
Remarks

The new_child node is inserted as a child of the current node, and a sibling of the
ref_child node. It is inserted immediately before the ref _child node in the DOM tree.

If ref_child is omitted, the new_child is added to the beginning of the list of children.

The node to be added may be created by XmlIDoc.CreateNode or may have been
removed from the tree using RemoveChild.

You cannot insert a node that is a member of one document tree into a different
document tree. Use the Clone method if you wish to insert a copy of a node from a
different document.

If a text node is inserted next to another text node, the new text is merged with the old
text node and the new node is freed.

Examples

Dim doc As XmlDoc

Dim root As XmINode

Dim eleml As XmINode

Dim elem2 As XmlINode

Dim text As XmINode

doc = New XmIDoc(*'my_doc'™)

580

XML Classes

root = doc.DocumentElement

eleml = doc.CreateNode('element', "sectionl')
text = doc.CreateNode(""text'™)
text.Value = "This is the data for section 1"

eleml.AppendChild(text)
root.AppendChild(eleml)

elem2 = doc.CreateNode("element', "'section2')
root. InsertBefore(elem2, eleml)

See Also

XML Classes | xmldoc_object.CreateNode | xmInode object.AppendChild |
xmlnode object.InsertAfter

581

XML Classes

xmlnode object.LastChild Method

Returns the last child node of the current node.
...XxmInode_object.LastChild

Prerequisites
None

Parameters
None

Remarks

This method returns a new XmINode object that corresponds to the last child node of the
current node. If the current node does not have any children, the returned object is
Nothing.

This method does not create a new node in the DOM tree.

Examples

Dim doc As XmlDoc

Dim root As XmINode

Dim eleml As XmlINode

Dim elem2 As XmINode

doc = New XmlIDoc(*'my_doc'™)

root = doc.DocumentElement

eleml = root.AddElementNode(''sectionl', *"‘Data for section 1')
elem2 = root.AddElementNode(*'section2', "Data for section 2')
Console.Writeline(root.LastChild.Name) " Displays "'section2"

See Also

XML Classes | xmlnode object.FirstChild | xmlnode object.NextSibling
xmlnode object.ParentNode | xmlnode object.PreviousSibling

582

XML Classes

xmlnode object.Name Property

Returns the name of the current node, if it has a name.
...XxmInode_object.Name

Prerequisites
None

Parameters
None

Remarks

Returns the name of the current node or an empty string (") if the node has no name.

Examples

Dim doc As XmlDoc

Dim root As XmINode

doc = New XmlIDoc(*'my_doc™)

root = doc.DocumentElement
Console.Writeline(root.Name) " Displays "my_doc"

See Also

XML Classes | xmlnode object.Type | xmlnode object.Value

583

XML Classes

xmlnode object.NextSibling Method

Returns the next sibling node of the current node.

...xmInode_object.NextSibling

Prerequisites

None

Parameters

None

Remarks

This method returns a new XmINode object that corresponds to the next sibling of the
current node. If there is no next sibling, the returned object is Nothing.

A sibling is a node that has the same parent as the current node. The order of siblings
corresponds to the order of data items in the XML text document.

This method does not create a new node in the DOM tree.

Examples

Dim doc As XmlDoc

Dim root As XmINode

Dim eleml As XmlINode

Dim elem2 As XmlINode

doc = New XmlIDoc(*'my_doc'™)

root = doc.DocumentElement

eleml = root.AddElementNode(''sectionl', "Data for section 1')
elem2 = root.AddElementNode(''section2', '‘Data for section 2')
Console.Writeline(eleml_NextSibling.Name) " Displays "section2"

See Also

584

XML Classes | xmlnode object.ParentNode | xmlnode object.PreviousSibling

XML Classes

xmlnode_ object.OwnerDocument Method

Returns the XmIDoc object for the DOM tree that contains the current node.
...xmInode_object.OwnerDocument

Prerequisites
None

Parameters
None

Remarks

This method provides a back-pointer for the current node to the XmIDoc object for the
node’s DOM tree. Normally, all nodeobjects have an associated XmIDoc object, unless
the document tree was freed by some other method.

If the current object has no associated document, an exception is thrown.
Examples

Dim docl As XmlDoc

Dim doc2 As XmlDoc

Dim root As XmINode

docl = New XmlDoc(*'my_doc'™)

root = docl.DocumentElement

doc2 = root.OwnerDocument

" docl and doc 2 point to same object, docl Is doc2

See Also

XML Classes | xmInode object.ParentNode

585

XML Classes

xmlnode_ object.ParentNode Method

Returns the parent node of the current node.
...xmInode_object.ParentNode

Prerequisites
None

Parameters
None

Remarks

This method returns a new XmINode object that corresponds to the parent of the current
node. If the current node is not part of a DOM tree, it will not have a parent and the
returned object is Nothing.

This method does not create a new node in the DOM tree.

Examples

Dim doc As XmlDoc

Dim root As XmINode

Dim eleml As XmINode

Dim subl As XmINode

doc = New XmlIDoc(*'my_doc'™)

root = doc.DocumentElement

eleml = root.AddElementNode(''sectionl', '"Data for section 1')
subl = eleml.AddElementNode(*'section-a', "Sub-section data')
Console.Writeline(subl.ParentNode.Name) " Output is ''sectionl"

See Also

XML Classes | xmlnode object.NextSibling | xmInode object.OwnerDocument
xmlnode object.PreviousSibling

586

XML Classes

xmlnode_object.PreviousSibling Method

Returns the previous sibling node of the current node.
...xmInode_object.PreviousSibling

Prerequisites
None

Parameters
None

Remarks

This method returns a new XmINode object that corresponds to the previous sibling of
the current node. If there is no previous sibling, the returned object is Nothing.

A sibling is a node that has the same parent as the current node. The order of siblings
corresponds to the order of data items in the XML text document.

This method does not create a new node in the DOM tree.

Examples

Dim doc As XmlDoc

Dim root As XmINode

Dim eleml As XmlINode

Dim elem2 As XmlINode

doc = New XmlIDoc(*'my_doc'™)

root = doc.DocumentElement

eleml = root.AddElementNode(''sectionl', "Data for section 1')

elem2 = root.AddElementNode(''section2', '‘Data for section 2')
Console.Writeline(elem2_PreviousSibling.Name) = Displays ''sectionl™

See Also

XML Classes | xmlnode object.NextSibling | xmlnode object.ParentNode

587

XML Classes

xmlnode object.RemoveAttribute Method

Removes specified child attribute node and its subtrees from a DOM tree.
xmlnode_object.RemoveAttribute(attribute)

Prerequisites

The current node must be of type "element” or "document".

Parameters
attribute
A required string expression that specifies the name of the attribute to be
removed.
Remarks

This is a convenience method that finds and removes a child node that contains a
specified attribute. The removed attribute node and any nodes beneath it are deleted and
are no longer accessible.

If an attribute is not found, an exception is thrown.
The attribute must be immediate child of the current node.

Examples

Dim doc As XmlDoc

Dim root As XmINode

doc = New XmIDoc(*'my_doc'™)

root = doc.DocumentElement

root.AddAttribute(*'color', "orange')
root.RemoveAttribute('color') " Attribute is removed

See Also

XML Classes | xminode object.AddAttribute | xmlnode object.RemoveChild
xmlnode object.RemoveElement

588

XML Classes

xmlnode_object.RemoveChild Method

Remove a specified child node and its subtree from the DOM tree.
xmlnode_object.RemoveChild(old_child)

Prerequisites

None
Parameters
old_child
A required XmINode object that indicates the DOM tree node to remove.
Remarks

The DOM node (and its subtree) associated with the old_child object is removed from the
tree. This node and its subtree can then be placed in the same tree at a different location.

The old_child object must be an immediate child of the current node.

If a node is removed from the DOM tree and not placed somewhere else in the same
tree, it and its subtree are lost once the corresponding XmINode object is destroyed.

Examples

Dim doc As XmlDoc

Dim root As XmINode

Dim eleml As XmINode

Dim elem2 As XmINode

doc = New XmIDoc(*'my_doc'™)

root = doc.DocumentElement

eleml = root.AddElementNode(''sectionl', '"Data for section 1)
elem2 = root.AddElementNode(''section2', 'Data for section 2')
root.RemoveChild(eleml) " "sectionl" is removed from the tree

See Also

XML Classes | xminode object.RemoveAttribute | xmlnode object.RemoveElement

589

XML Classes

xmlnode object.RemoveElement Method

Removes a specified child element node and its subtree from the DOM tree.
xmlnode_object.RemoveElement(element)

Prerequisites

The current node must be of type "element” or "document”.

Parameters
element
A required string expression that specifies the name of the element to be
removed.
Remarks

This is a convenience method that finds and removes a specified child element node in a
DOM tree. The removed element node and the nodes beneath it are deleted and are no
longer available.

If the element is not found, an exception is thrown.
The element must be an immediate child of the current node.

Examples

Dim doc As XmlDoc

Dim root As XmINode

Dim eleml As XmINode

Dim elem2 As XmINode

doc = New XmlIDoc(*'my_doc'™)
root = doc.DocumentElement

eleml = root.AddElementNode(*'sectionl’, "Data for section 1')
elem2 = root.AddElementNode(''section2', 'Data for section 2')
root.RemoveElement(‘'sectionl') " Removes "'sectionl"

See Also

XML Classes | xmIlnode object. AddElement| xmInode object.RemoveAttribute
xmlnode object.RemoveChild

590

XML Classes

xmlnode_object.ReplaceChild Method

Replaces a child of the current node with a new node.
xmlnode_object.ReplaceChild(new_child, old_child)

Prerequisites

None
Parameters
new_child
A required XmINode object that specifies a new node in the current
node’s DOM tree. This new node will be inserted as a child of the current
node.
old_child
A required XmINode object that specifies a child of the current node.
This child will be removed from the DOM tree.
Remarks

The old_child node and its subtree are removed from the DOM tree and the new_child
node and its subtree are put in its place. The old_child node and its subtree can then be
placed at a different location in the same tree or they can be deleted.

The old_child node must be an immediate child of the current node.

You cannot place a node that is a member of one document tree into a different
document tree. Use the Clone method if you wish to make a copy of a node for a
different document tree.

If a node is removed from a DOM tree and is not placed somewhere else in the tree, it is
deleted once the corresponding XmINode object is destroyed.

Examples

Dim doc As XmlDoc

Dim root As XmINode

Dim eleml As XmlINode

Dim elem2 As XmINode

Dim text As XmINode

doc = New XmIDoc(*'my_doc'™)

root = doc.DocumentElement

eleml = root.AddElementNode(''sectionl', '"'Data for section 1)

591

XML Classes

elem2 = doc.CreateNode("element', "section2')
text = doc.CreateNode(""text'™)
text.Value = "Data for section 2"

elem2._AppendChild(text)
root_ReplaceChild(elem2, eleml) " Replace sectionl with section2

See Also

XML Classes | xmlnode object.RemoveAttribute | xminode object.RemoveChild |
xmInode object.RemoveElement

592

xmlnode_ object.SetAttribute Method

Changes the value of an existing attribute.

xmlnode_object.SetAttribute(attribute, new_value)

Prerequisites
The current node must be of type "element” or "document".
Parameters

attribute

A required String expression that specifies the name of the attribute to
be changed.

new_value

A required String expression that specifies the new value of the
attribute.

Remarks

This is a convenience method that modifies an attribute value in a DOM tree. The

new_value replaces the old value of the attribute.

The attribute must be an immediate child of the current node.

If the attribute is not found, an exception is thrown.
Examples

Dim doc As XmlDoc

Dim root As XmINode

doc = New XmlIDoc(*'my_doc'™)

root = doc.DocumentElement

root.AddAttribute(*'color', "orange')
root.SetAttribute(*'color’™, "green'™) * Change color to '‘green”

See Also

XML Classes | xmlnode object.GetAttribute | xmlnode object.SetElement

XML Classes

593

XML Classes

xmlnode_ object.SetElement Method

Changes the value of an existing child element.
xmlnode_object.SetElement(element, new_value)

Prerequisites

The current node must be of type "element” or "document".
Parameters

element

A required String expression that specifies the name of the element to
be changed.

new_value

A required String expression that specifies the new value of the element.

Remarks

This is a convenience method that modifies an element value in a DOM tree. The
new_value replaces the old value of the element.

The element must be an immediate child of the current node.
If the element is not found, an exception is thrown.

Examples

Dim doc As XmlDoc

Dim root As XmINode

doc = New XmIDoc(*'my_doc'™)
root = doc.DocumentElement

root.AddElement(*'sectionl', "Data for section 1')
root.SetElement(*'sectionl", "New data for section 1)
See Also

XML Classes | xmlnode object.GetElement | xmlnode object.SetAttribute

594

XML Classes

xmlnode_object.Type Property

Returns the type of the current node as a String.
... Xxmlnode_object.Type

Prerequisites
None

Parameters
None

Remarks

Returns one of the type Strings from the table below.

type String Description

IAn attribute. Normally has a text node child with the attribute
value.

A CDATA text node that allows special characters in the data
without encoding them.

/A special text node that contains a comment not considered
part of the document data.

'The basic node type. An element corresponds to an XML text
element tag that begins with “<name>" and ends with “</name>".
Normally has a text node child with the element value.
processinginstruction|A text node that contains processor-specific information.

The data contents of an element or attribute. It holds whatever
is between two element tags, or the “value” of an attribute.

attribute

cdatasection

comment

text

attributedeclaration
document
documentfragment
documenttype
dtd
elementdeclaration
entity
entitydeclaration
entityreference
htmldocument
namespace
notation
xincludeend
xincludestart

You cannot create nodes of these types within the GPL
classes, but they may appear in externally created XML text
documents.

595

XML Classes

Examples

Dim doc As XmlDoc

Dim root As XmINode

doc = New XmlIDoc(*'my_doc™)

root = doc.DocumentElement
Console.Writeline(root.Type) " Displays "element"

See Also

XML Classes | xminode object.Name | xmInode _object.Value

596

XML Classes

xmlnode_ object.Value Property

Returns the value of the current node as a String or sets the value of the current node.

... xmlnode_object.Value
Or
xmlnode_object.Value = string_value
Prerequisites
None
Parameters
None

Remarks

If a node does not have a value directly, any child text nodes are accessed transparently
and their values are set or returned.

Examples

Dim doc As XmlDoc

Dim root As XmINode

Dim elem As XmINode

doc = New XmIDoc(*'my_doc'™)
root = doc.DocumentElement

elem = root._AddElementNode(''sectionl™, "Data for section 1')
Console.Writeline(elem._Value) " Writes "Data for section 1"
See Also

XML Classes | xmlnode object.Name | xmlnode object.Type

597

	Guidance Programming Language
	GPL Dictionary Pages
	GPL Dictionary Pages Summary
	Array Class
	Array Class Summary
	array.GetUpperBound Property
	array.Length Property
	array.Rank Property

	Console Class
	Console Class Summary
	Console.Write Method
	Console.WriteLine Method

	Controller Class
	Controller Class Summary
	Controller.Command Method
	Controller.ErrorLog Property
	Controller.Load Method
	Controller.PDb Property
	Controller.PDbNum Property
	Controller.PowerEnabled Property
	Controller.PowerState Property
	Controller.RecordButton Property
	Controller.ShowDialog Method - Basic Modes
	Controller.ShowDialog Method - Advanced Mode
	Controller.ShowDialogMCP Method
	Controller.SleepTick Method
	Controller.SoftEStop Property
	Controller.SystemMessage Method
	Controller.SystemSpeed Property
	Controller.Tick Property
	Controller.Timer Property
	Controller.Unload Method

	Exception Handling
	Exception Handling Summary
	Catch Statement
	End Try Statement
	Exit Try Statement
	Finally Statement
	Throw Statement
	Try..Catch..Finally..End Try Statements
	exception_object.Axis Property
	exception_object.Clone Method
	exception_object.ErrorCode Property
	exception_object.Message Method
	exception_object.Qualifier Property
	exception_object.RobotError Property
	exception_object.RobotNum Property
	exception_object.UpdateErrorCode Method

	File and Serial I/O Classes
	File and Serial I/O Classes Summary
	File.Copy Method
	File.CreateDirectory Method
	File.DeleteDirectory Method
	File.DeleteFile Method
	File.GetDirectories Method
	File.GetFiles Method
	New StreamReader Constructor
	streamreader_object.Close Method
	streamreader_object.Peek Method
	streamreader_object.Read Method
	streamreader_object.ReadLine Method
	New StreamWriter Constructor
	streamwriter_object.AutoFlush Property
	streamwriter_object.Close Method
	streamwriter_object.Flush Method
	streamwriter_object.NewLine Property
	streamwriter_object.Write Method
	streamwriter_object.WriteLine Method

	Functions
	Function Summary
	CBool Function
	CByte Function
	CDbl Function
	CInt Function
	CShort Function
	CSng Function
	CStr Function
	Fix Function
	Hex Function
	Int Function
	Rnd Function

	Latch Class
	Latch Class Summary
	latch_object.Angle Property
	Latch.Count Shared Property
	latch_object.ErrorCode Property
	Latch.Flush Shared Method
	latch_object.Location Method
	Latch.Result Shared Method
	latch_object.Signal Property
	Latch.ThreadEvent Shared Property
	latch_object.Timestamp Property

	Location Class
	Location Class Summary
	location_object.Angle Property
	location_object.Angles Method
	location_object.Clone Method
	location_object.Config Property
	location_object.ConveyorLimit Method
	Location.Distance Method
	location_object.Here Method
	location_object.Here3 Method
	location_object.Inverse Method
	location_object.KineSol Method
	location_object.Mul Method
	location_object.Normalize Method
	location_object.Pitch Property
	location_object.Pos Property
	location_object.PosWrtRef Property
	location_object.RefFrame Property
	location_object.Roll Property
	location_object.Text Property
	location_object.Type Property
	location_object.X Property
	location_object.XYZ Method
	location_object.XYZInc Method
	Location.XYZValue Method
	location_object.Y Property
	location_object.Yaw Property
	location_object.Z Property
	location_object.ZClearance Property
	location_object.ZWorld Property

	Math Class
	Math Class Summary
	Math.Abs Method
	Math.Acos Method
	Math.Asin Method
	Math.Atan Method
	Math.Atan2 Method
	Math.Ceiling Method
	Math.Cos Method
	Math.Cosh Method
	Math.E Method
	Math.Exp Method
	Math.Floor Method
	Math.Log Method
	Math.Log10 Method
	Math.Max Method
	Math.Min Method
	Math.PI Method
	Math.Pow Method
	Math.Sign Method
	Math.Sin Method
	Math.Sinh Method
	Math.Sqrt Method
	Math.Tan Method
	Math.Tanh Method

	Modbus Class
	Modbus Class Summary
	modbus_object.Close Method
	modbus_object.ReadCoils Method
	modbus_object.ReadDeviceID Method
	modbus_object.ReadDiscreteInputs Method
	modbus_object.ReadHoldingRegisters Method
	modbus_object.ReadInputRegisters Method
	modbus_object.Timeout Property
	modbus_object.WriteMultipleCoils Method
	modbus_object.WriteMultipleRegisters Method
	modbus_object.WriteSingleCoil Method
	modbus_object.WriteSingleRegister Method

	Move Class
	Move Class Summary
	Move.Approach Method
	Move.Arc Method
	Move.Circle Method
	Move.Delay Method
	Move.Extra Method
	Move.ForceOverlap Method
	Move.Loc Method
	Move.OneAxis Method
	Move.Rel Method
	Move.SetJogCommand Method
	Move.SetRealTimeMod Method
	Move.SetSpeeds Method
	Move.SetTorques Method
	Move.StartJogMode Method
	Move.StartRealTimeMod Method
	Move.StartSpeedDAC Method
	Move.StartTorqueCntrl Method
	Move.StartVelocityCntrl Method
	Move.StopSpecialModes Method
	Move.Trigger Method
	Move.WaitForEOM Method

	Networking Classes
	Networking Classes Summary
	New IPEndPoint Constructor
	ipendpoint_object.IPAddress Property
	ipendpoint_object.Port Property
	socket_object.Available Property
	socket_object.Blocking Property
	socket_object.Close Method
	socket_object.Connect Method
	socket_object.KeepAlive Property
	socket_object.Receive Method
	socket_object.ReceiveFrom Method
	socket_object.ReceiveTimeout Property
	socket_object.RemoteEndPoint Property
	socket_object.Send Method
	socket_object.SendTimeout Property
	socket_object.SendTo Method
	New TcpClient Constructor
	tcpclient_object.Client Method
	tcpclient_object.Close Method
	New TcpListener Constructor
	tcplistener_object.AcceptSocket Method
	tcplistener_object.Close Method
	tcplistener_object.Pending Property
	tcplistener_object.Start Method
	tcplistener_object.Stop Method
	New UdpClient Constructor
	udpclient_object.Client Method
	udpclient_object.Close Method

	Profile Class
	Profile Class Summary
	profile_object.Accel Property
	profile_object.AccelRamp Property
	profile_object.Clone Method
	profile_object.Decel Property
	profile_object.DecelRamp Property
	profile_object.InRange Property
	profile_object.Speed Property
	profile_object.Speed2 Property
	profile_object.Straight Property
	profile_object.Text Property

	Reference Frame Class
	RefFrame Class Summary
	refframe_object.ConveyorOffset Property
	refframe_object.ConveyorRobot Property
	refframe_object.Loc Property
	refframe_object.PalletIndex Property
	refframe_object.PalletMaxIndex Property
	refframe_object.PalletNextPos Method
	refframe_object.PalletOrder Property
	refframe_object.PalletPitch Property
	refframe_object.PalletRowColLay Method
	refframe_object.Pos Method
	refframe_object.PosWrtRef Method
	refframe_object.Text Property
	refframe_object.Type Property

	Robot Class
	Robot Class Summary
	Robot.Attached Property
	Robot.Base Property
	Robot.CartMode Property
	Robot.Custom Property
	Robot.DefLinComp Method
	Robot.Dest Property
	Robot.DestAngles Property
	Robot.Home Method
	Robot.HomeAll Method
	Robot.JointToMotor Method
	Robot.LastProfile Property
	Robot.MotorTempStatus Property
	Robot.MotorToJoint Method
	Robot.Payload Property
	Robot.RapidDecel Property
	Robot.RealTimeModAcm Property
	Robot.RestartBase Property
	Robot.RestartTool Property
	Robot.Selected Property
	Robot.Source Property
	Robot.SourceAngles Property
	Robot.SpeedAngles Property
	Robot.Tool Property
	Robot.TrajState Property
	Robot.Where Property
	Robot.WhereAngles Property

	Signal Class
	Signal Class Summary
	Signal.AIO Property
	Signal.DIO Property

	Statements
	Statements Summary
	Call Statement
	Case, Case Else Statements
	Class Statement
	Const Statement
	Delegate Statement
	Dim Statement
	Do...Loop Statements
	Else, ElseIF Statements
	End Statements
	Exit Statements
	For...Next Statements
	Function Statement
	Get Statement
	GoTo Statement
	If..Then...Else...End If Statements
	Loop Statements
	Module Statement
	Next Statements
	Property Statement
	ReDim Statement
	Return Statement
	Select...Case...End Select Statements
	Set Statement
	Sub Statement
	While...End While Statements

	Strings
	String Summary
	String.Compare Method
	string.IndexOf Method
	string.Length Property
	string.Split Method
	string.Substring Method
	string.ToLower Method
	string.ToUpper Method
	string.Trim Method
	string.TrimEnd Method
	string.TrimStart Method
	Asc Function
	Chr Function
	Format Function
	FromBitString Function
	Instr Function
	LCase Function
	Len Function
	Mid Function
	ToBitString Function
	UCase Function

	Thread Class
	Thread Class Summary
	New Thread Constructor
	thread_object.Abort Method
	thread_object.Argument Property
	Thread.CurrentThread Shared Method
	thread_object.Join Method
	thread_object.Name Property
	thread_object.Project Property
	thread_object.Resume Method
	Thread.Schedule Shared Method
	thread_object.SendEvent Method
	Thread.Sleep Shared Method
	thread_object.Start Method
	thread_object.StartProcedure Property
	thread_object.Suspend Method
	Thread.TestAndSet Shared Method
	thread_object.ThreadState Property
	Thread.WaitEvent Shared Method

	Vision Classes
	Vision Classes Summary
	vision_object.Disconnect Method
	vision_object.ErrorCode Property
	vision_object.Instance Property
	vision_object.IPAddress Property
	vision_object.Process Method
	vision_object.Result Method
	vision_object.ResultCount Method
	vision_object.Status Property
	vision_object.ToolProperty Property
	visresult_object.ErrorCode Property
	visresult_object.Info Property
	visresult_object.InfoCount Property
	visresult_object.InfoString Property
	visresult_object.InspectActual Property
	visresult_object.InspectPassed Property
	visresult_object.Loc Property
	visresult_object.ProcessID Property
	visresult_object.Type Property

	XML Classes
	XML Classes Summary
	New XmlDoc Constructor
	xmldoc_object.CreateNode Method
	XmlDoc.DecodeEntities Shared Method
	xmldoc_object.DocumentElement Method
	XmlDoc.EncodeEntities Shared Method
	xmldoc_object.ErrorCode Property
	XmlDoc.LoadFile Shared Method
	XmlDoc.LoadString Shared Method
	xmldoc_object.Message Property
	xmldoc_object.SaveFile Method
	xmldoc_object.SaveString Method
	xmlnode_object.AddAttribute Method
	xmlnode_object.AddElement Method
	xmlnode_object.AddElementNode Method
	xmlnode_object.AppendChild Method
	xmlnode_object.ChildNodeCount Property
	xmlnode_object.Clone Method
	xmlnode_object.FirstChild Method
	xmlnode_object.GetAttribute Method
	xmlnode_object.GetAttributeNode Method
	xmlnode_object.GetElement Method
	xmlnode_object.GetElementNode Method
	xmlnode_object.HasAttribute Method
	xmlnode_object.HasChildNodes Property
	xmlnode_object.HasElement Method
	xmlnode_object.InsertAfter Method
	xmlnode_object.InsertBefore Method
	xmlnode_object.LastChild Method
	xmlnode_object.Name Property
	xmlnode_object.NextSibling Method
	xmlnode_object.OwnerDocument Method
	xmlnode_object.ParentNode Method
	xmlnode_object.PreviousSibling Method
	xmlnode_object.RemoveAttribute Method
	xmlnode_object.RemoveChild Method
	xmlnode_object.RemoveElement Method
	xmlnode_object.ReplaceChild Method
	xmlnode_object.SetAttribute Method
	xmlnode_object.SetElement Method
	xmlnode_object.Type Property
	xmlnode_object.Value Property

